References of "Derouaux, Adeline"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailPositive cooperativity between acceptor and donor sites of the peptidoglycan glycosyltransferase.
Bury, Daniel; Dahmane, Ismahene ULg; Derouaux, Adeline ULg et al

in Biochemical pharmacology (2015), 93(2), 141-50

The glycosyltransferases of family 51 (GT51) catalyze the polymerization of lipid II to form linear glycan chains, which, after cross linking by the transpeptidases, form the net-like peptidoglycan ... [more ▼]

The glycosyltransferases of family 51 (GT51) catalyze the polymerization of lipid II to form linear glycan chains, which, after cross linking by the transpeptidases, form the net-like peptidoglycan macromolecule. The essential function of the GT makes it an attractive antimicrobial target; therefore a better understanding of its function and its mechanism of interaction with substrates could help in the design and the development of new antibiotics. In this work, we have used a surface plasmon resonance Biacore((R)) biosensor, based on an amine derivative of moenomycin A immobilized on a sensor chip surface, to investigate the mechanism of binding of substrate analogous inhibitors to the GT. Addition of increasing concentrations of moenomycin A to the Staphylococcus aureus MtgA led to reduced binding of the protein to the sensor chip as expected. Remarkably, in the presence of low concentrations of the most active disaccharide inhibitors, binding of MtgA to immobilized moenomycin A was found to increase; in contrast competition with moenomycin A occurred only at high concentrations. This finding suggests that at low concentrations, the lipid II analogs bind to the acceptor site and induce a cooperative binding of moenomycin A to the donor site. Our results constitute the first indication of the existence of a positive cooperativity between the acceptor and the donor sites of peptidoglycan GTs. In addition, our study indicates that a modification of two residues (L119N and F120S) within the hydrophobic region of MtgA can yield monodisperse forms of the protein with apparently no change in its secondary structure content, but this is at the expense of the enzyme function. [less ▲]

Detailed reference viewed: 18 (7 ULg)
Full Text
Peer Reviewed
See detailElongated Structure of the Outer-Membrane Activator of Peptidoglycan Synthesis LpoA: Implications for PBP1A Stimulation
Jean, Nicolas; Bougault, Catherine; Lodge, Adam et al

in Structure (2014)

The bacterial cell envelope contains the stress-bearing peptidoglycan layer, which is enlarged during cell growth and division by membrane-anchored synthases guided by cytoskeletal elements. In ... [more ▼]

The bacterial cell envelope contains the stress-bearing peptidoglycan layer, which is enlarged during cell growth and division by membrane-anchored synthases guided by cytoskeletal elements. In Escherichia coli, the major peptidoglycan synthase PBP1A requires stimulation by the outer-membrane-anchored lipoprotein LpoA. Whereas the C-terminal domain of LpoA interacts with PBP1A to stimulate its peptide crosslinking activity, little is known about the role of the N-terminal domain. Herein we report its NMR structure, which adopts an all-α-helical fold comprising a series of helix-turn-helix tetratricopeptide-repeat (TPR)-like motifs. NMR spectroscopy of full-length LpoA revealed two extended flexible regions in the C-terminal domain and limited, if any, flexibility between the N- and C-terminal domains. Analytical ultracentrifugation and small-angle X-ray scattering results are consistent with LpoA adopting an elongated shape, with dimensions sufficient to span from the outer membrane through the periplasm to interact with the peptidoglycan synthase PBP1A. [less ▲]

Detailed reference viewed: 8 (0 ULg)
Full Text
Peer Reviewed
See detailBackbone and side-chain 1H, 13C, and 15N NMR assignments of the N-terminal domain of Escherichia coli LpoA.
Jean, Nicolas; Bougault, Catherine; Derouaux, Adeline ULg et al

in Biomolecular NMR Assignments (2014)

The peptidoglycan is a major component of the bacterial cell wall and is essential to maintain cellular integrity and cell shape. Penicillin-Binding Proteins (PBPs) catalyze the final biosynthetic steps ... [more ▼]

The peptidoglycan is a major component of the bacterial cell wall and is essential to maintain cellular integrity and cell shape. Penicillin-Binding Proteins (PBPs) catalyze the final biosynthetic steps of peptidoglycan synthesis from lipid II precursor and are the main targets of β-lactam antibiotics. The molecular details of peptidoglycan growth and its regulation are poorly understood. Presumably, PBPs are active in peptidoglycan synthesizing multi-enzyme complexes that are controlled from inside the cell by cytoskeletal elements. Recently, two outer-membrane lipoproteins, LpoA and LpoB, were shown to be required in Escherichia coli for the function of the main peptidoglycan synthases, PBP1A and PBP1B, by stimulating their transpeptidase activity. However, the mechanism of PBP-activation by Lpo proteins is not known, and the Lpo proteins await structural characterization at atomic resolution. Here we present the backbone and side-chain 1H, 13C, 15N NMR assignments of the N-terminal domain of LpoA from E. coli for structural and functional studies. [less ▲]

Detailed reference viewed: 8 (0 ULg)
Full Text
Peer Reviewed
See detailAmiA is a penicillin target enzyme with dual activity in the intracellular pathogen Chlamydia pneumoniae
Klockner, Anna; Otten, Christian; Derouaux, Adeline ULg et al

in Nature Communications (2014)

Intracellular Chlamydiaceae do not need to resist osmotic challenges and a functional cell wall was not detected in these pathogens. Nevertheless, a recent study revealed evidence for circular ... [more ▼]

Intracellular Chlamydiaceae do not need to resist osmotic challenges and a functional cell wall was not detected in these pathogens. Nevertheless, a recent study revealed evidence for circular peptidoglycan-like structures in Chlamydiaceae and penicillin inhibits cytokinesis, a phenomenon known as the chlamydial anomaly. Here, by characterizing a cell wall precursor-processing enzyme, we provide insights into the mechanisms underlying this mystery. We show that AmiA from Chlamydia pneumoniae separates daughter cells in an Escherichia coli amidase mutant. Contrary to homologues from free-living bacteria, chlamydial AmiA uses lipid II as a substrate and has dual activity, acting as an amidase and a carboxypeptidase. The latter function is penicillin sensitive and assigned to a penicillin-binding protein motif. Consistent with the lack of a regulatory domain in AmiA, chlamydial CPn0902, annotated as NlpD, is a carboxypeptidase, rather than an amidase activator, which is the case for E. coli NlpD. Functional conservation of AmiA implicates a role in cytokinesis and host response modulation. [less ▲]

Detailed reference viewed: 6 (0 ULg)
Full Text
Peer Reviewed
See detailCrystal structure of penicillin-binding protein 3 (PBP3) from Escherichia coli
Sauvage, Eric; Derouaux, Adeline ULg; Fraipont, Claudine ULg et al

in PLoS ONE (2014)

In Escherichia coli, penicillin-binding protein 3 (PBP3), also known as FtsI, is a central component of the divisome, catalyzing cross-linking of the cell wall peptidoglycan during cell division. PBP3 is ... [more ▼]

In Escherichia coli, penicillin-binding protein 3 (PBP3), also known as FtsI, is a central component of the divisome, catalyzing cross-linking of the cell wall peptidoglycan during cell division. PBP3 is mainly periplasmic, with a 23 residues cytoplasmic tail and a single transmembrane helix. We have solved the crystal structure of a soluble form of PBP3 (PBP357-577) at 2.5 Å revealing the two modules of high molecular weight class B PBPs, a carboxy terminal module exhibiting transpeptidase activity and an amino terminal module with unknown function. To gain additional insight, the PBP3 Val88-Ser165 subdomain (PBP388-165), for which the electron density is poorly defined in the PBP3 crystal, was produced and its structure solved by SAD phasing at 2.1 Å. The structure shows a three dimensional domain swapping with a β-strand of one molecule inserted between two strands of the paired molecule, suggesting a possible role in PBP357-577 dimerization. [less ▲]

Detailed reference viewed: 16 (1 ULg)
Peer Reviewed
See detailBacterial cell wall growth, shape and division.
Derouaux, Adeline ULg; Terrak, Mohammed ULg; Den Blaauwen, Tanneke et al

in Bacterial Membranes: Structural and Molecular Biology (2013)

Detailed reference viewed: 18 (3 ULg)
Full Text
Peer Reviewed
See detailPeptidoglycan glycosyltransferase substrate mimics as templates for the design of new antibacterial drugs.
Derouaux, Adeline ULg; Sauvage, Eric ULg; Terrak, Mohammed ULg

in Frontiers in immunology (2013), 4

Peptidoglycan (PG) is an essential net-like macromolecule that surrounds bacteria, gives them their shape, and protects them against their own high osmotic pressure. PG synthesis inhibition leads to ... [more ▼]

Peptidoglycan (PG) is an essential net-like macromolecule that surrounds bacteria, gives them their shape, and protects them against their own high osmotic pressure. PG synthesis inhibition leads to bacterial cell lysis, making it an important target for many antibiotics. The final two reactions in PG synthesis are performed by penicillin-binding proteins (PBPs). Their glycosyltransferase (GT) activity uses the lipid II precursor to synthesize glycan chains and their transpeptidase (TP) activity catalyzes the cross-linking of two glycan chains via the peptide side chains. Inhibition of either of these two reactions leads to bacterial cell death. beta-lactam antibiotics target the transpeptidation reaction while antibiotic therapy based on inhibition of the GTs remains to be developed. Ongoing research is trying to fill this gap by studying the interactions of GTs with inhibitors and substrate mimics and utilizing the latter as templates for the design of new antibiotics. In this review we present an updated overview on the GTs and describe the structure-activity relationship of recently developed synthetic ligands. [less ▲]

Detailed reference viewed: 14 (4 ULg)
Full Text
Peer Reviewed
See detailSynthesis of Modified Peptidoglycan Precursor Analogues for the Inhibition of Glycosyltransferase.
Dumbre, S; Derouaux, Adeline ULg; Lescrinier, E et al

in Journal of the American Chemical Society (2012)

The peptidoglycan glycosyltransferases (GTs) are essential enzymes that catalyze the polymerization of glycan chains of the bacterial cell wall from lipid II and thus constitute a validated antibacterial ... [more ▼]

The peptidoglycan glycosyltransferases (GTs) are essential enzymes that catalyze the polymerization of glycan chains of the bacterial cell wall from lipid II and thus constitute a validated antibacterial target. Their enzymatic cavity is composed of a donor site for the growing glycan chain (where the inhibitor moenomycin binds) and an acceptor site for lipid II substrate. In order to find lead inhibitors able to fill this large active site, we have synthesized a series of substrate analogues of lipid I and lipid II with variations in the lipid, the pyrophosphate, and the peptide moieties and evaluated their biological effect on the GT activity of E. coli PBP1b and their antibacterial potential. We found several compounds able to inhibit the GT activity in vitro and cause growth defect in Bacillus subtilis . The more active was C16-phosphoglycerate-MurNAc-(l-Ala-d-Glu)-GlcNAc, which also showed antibacterial activity. These molecules are promising leads for the design of new antibacterial GT inhibitors. [less ▲]

Detailed reference viewed: 19 (5 ULg)
See detailTowards the understanding of the structure and assembly of the E. coli septum
Derouaux, Adeline ULg; Vollmer, Waldemar

Poster (2011, June)

Detailed reference viewed: 7 (3 ULg)
See detailTowards the understanding of the structure and assembly of the E. coli septum
Derouaux, Adeline ULg; Vollmer, Waldemar

Conference (2011, June)

Detailed reference viewed: 4 (1 ULg)
Full Text
Peer Reviewed
See detailSmall molecule inhibitors of peptidoglycan synthesis targeting the lipid II precursor.
Derouaux, Adeline ULg; Turk, Samo; Olrichs, Nick K et al

in Biochemical Pharmacology (2011), 81(9), 1098-105

Bacterial peptidoglycan glycosyltransferases (GTs) of family 51 catalyze the polymerization of the lipid II precursor into linear peptidoglycan strands. This activity is essential to bacteria and ... [more ▼]

Bacterial peptidoglycan glycosyltransferases (GTs) of family 51 catalyze the polymerization of the lipid II precursor into linear peptidoglycan strands. This activity is essential to bacteria and represents a validated target for the development of new antibacterials. Application of structure-based virtual screening to the National Cancer Institute library using eHits program and the structure of the glycosyltransferase domain of the Staphylococcus aureus penicillin-binding protein 2 resulted in the identification of two small molecules analogues 5, a 2-[1-[(2-chlorophenyl)methyl]-2-methyl-5-methylsulfanylindol-3-yl]ethanamine and 5b, a 2-[1-[(3,4-dichlorophenyl)methyl]-2-methyl-5-methylsulfanylindol-3-yl]ethanamine that exhibit antibacterial activity against several Gram-positive bacteria but were less active on Gram-negative bacteria. The two compounds inhibit the activity of five GTs in the micromolar range. Investigation of the mechanism of action shows that the compounds specifically target peptidoglycan synthesis. Unexpectedly, despite the fact that the compounds were predicted to bind to the GT active site, compound 5b was found to interact with the lipid II substrate via the pyrophosphate motif. In addition, this compound showed a negatively charged phospholipid-dependent membrane depolarization and disruption activity. These small molecules are promising leads for the development of more active and specific compounds to target the essential GT step in cell wall synthesis. [less ▲]

Detailed reference viewed: 74 (15 ULg)
Full Text
Peer Reviewed
See detailOptimization of conditions for the glycosyltransferase activity of penicillin-binding protein 1a from Thermotoga maritima.
Offant, Julien; Terrak, Mohammed ULg; Derouaux, Adeline ULg et al

in FEBS Journal (2010), 277(20), 4290-8

Cell wall biosynthesis is a key target for antibacterial drugs. The major constituent of the bacterial wall, peptidoglycan, is a netlike polymer responsible for the size and shape of the cell and for ... [more ▼]

Cell wall biosynthesis is a key target for antibacterial drugs. The major constituent of the bacterial wall, peptidoglycan, is a netlike polymer responsible for the size and shape of the cell and for resisting osmotic pressure. It consists of glycan chains of repeating disaccharide units cross-linked through short peptide chains. Peptidoglycan assembly is catalyzed by the periplasmic domain of bifunctional class A penicillin-binding proteins. Cross-linking of the peptide chains is catalyzed by their transpeptidase module, which can be inhibited by the most widely used antibiotics, the beta-lactams. In contrast, no drug in clinical use inhibits the polymerization of the glycan chains, catalyzed by their glycosyltransferase module, although it is an obvious target. We report here the purification of the ectodomain of the class A penicillin-binding protein 1a from Thermotoga maritima (Tm-1a*), expressed recombinantly in Escherichia coli. A detergent screen showed that detergents with shorter aliphatic chains were better solubilizers. Cyclohexyl-hexyl-beta-D-maltoside-purified Tm-1a* was found to be monomeric and to have improved thermal stability. A miniaturized, multiwell continuous fluorescence assay of the glycosyltransferase activity was used to screen for optimal reaction conditions. Tm-1a* was active as a glycosyltransferase, catalyzing the formation of glycan chains up to 16 disaccharide units long. Our results emphasize the importance of the detergent in preparing a stable monomeric ectodomain of a class A penicillin-binding protein. Our assay could be used to screen collections of compounds for inhibitors of peptidoglycan glycosyltransferases that could serve as the basis for the development of novel antibiotics. [less ▲]

Detailed reference viewed: 26 (13 ULg)
See detailIdentification and characterization of novel peptidoglycan glycosyltransferase inhibitors with antibacterial activity
Derouaux, Adeline ULg; Turk, Samo; Offant, Julien et al

Poster (2009, November)

Detailed reference viewed: 25 (3 ULg)
Full Text
Peer Reviewed
See detailThe Monofunctional Glycosyltransferase of Escherichia Coli Localizes to the Cell Division Site and Interacts with Penicillin-Binding Protein 3, FtsW, and FtsN
Derouaux, Adeline ULg; Wolf, Benoît ULg; Fraipont, Claudine ULg et al

in Journal of Bacteriology (2008), 190(5), 1831-4

The monofunctional peptidoglycan glycosyltransferase (MtgA) catalyzes glycan chain elongation of the bacterial cell wall. Here we show that MtgA localizes at the division site of Escherichia coli cells ... [more ▼]

The monofunctional peptidoglycan glycosyltransferase (MtgA) catalyzes glycan chain elongation of the bacterial cell wall. Here we show that MtgA localizes at the division site of Escherichia coli cells that are deficient in PBP1b and produce a thermosensitive PBP1a and is able to interact with three constituents of the divisome, PBP3, FtsW, and FtsN, suggesting that MtgA may play a role in peptidoglycan assembly during the cell cycle in collaboration with other proteins. [less ▲]

Detailed reference viewed: 39 (10 ULg)
Full Text
Peer Reviewed
See detailImportance of the conserved residues in the peptidoglycan glycosyltransferase module of the class A penicillin-binding protein 1b of Escherichia coli.
Terrak, Mohammed ULg; Sauvage, Eric ULg; Derouaux, Adeline ULg et al

in Journal of Biological Chemistry (2008), 283(42), 28464-70

The peptidoglycan glycosyltransferase (GT) module of class A penicillin-binding proteins (PBPs) and monofunctional GTs catalyze glycan chain elongation of the bacterial cell wall. These enzymes belong to ... [more ▼]

The peptidoglycan glycosyltransferase (GT) module of class A penicillin-binding proteins (PBPs) and monofunctional GTs catalyze glycan chain elongation of the bacterial cell wall. These enzymes belong to the GT51 family, are characterized by five conserved motifs, and have some fold similarity with the phage lambda lysozyme. In this work, we have systematically modified all the conserved amino acid residues of the GT module of Escherichia coli class A PBP1b by site-directed mutagenesis and determined their importance for the in vivo and in vitro activity and the thermostability of the protein. To get an insight into the GT active site of this paradigm enzyme, a model of PBP1b GT domain was constructed based on the available crystal structures (PDB codes 2OLV and 2OLU). The data show that in addition to the essential glutamate residues Glu233 of motif 1 and Glu290 of motif 3, the residues Phe237 and His240 of motif 1 and Gly264, Thr267, Gln271, and Lys274 of motif 2, all located in the catalytic cavity of the GT domain, are essential for the in vitro enzymatic activity of the PBP1b and for its in vivo functioning. Thus, the first three conserved motifs contain most of the residues that are required for the GT activity of the PBP1b. The residues Asp234, Phe237, His240, Thr267, and Gln271 are proposed to maintain the structure of the active site and the positioning of the catalytic Glu233. [less ▲]

Detailed reference viewed: 77 (13 ULg)
Full Text
Peer Reviewed
See detailFrom dormant to germinating spores of Streptomyces coelicolor A3(2): new perspectives from the crp null mutant.
Piette, André ULg; Derouaux, Adeline ULg; Gerkens, Pascal et al

in Journal of Proteome Research (2005), 4(5), 1699-708

The complete understanding of the morphological differentiation of streptomycetes is an ambitious challenge as diverse sensors and pathways sensitive to various environmental stimuli control the process ... [more ▼]

The complete understanding of the morphological differentiation of streptomycetes is an ambitious challenge as diverse sensors and pathways sensitive to various environmental stimuli control the process. Germination occupies a particular position in the life cycle as the good achievement of the process depends on events occurring both during the preceding sporulation and during germination per se. The cyclic AMP receptor protein (crp) null mutant of Streptomyces coelicolor, affected in both sporulation and germination, was therefore presented as a privileged candidate to highlight new proteins involved in the shift from dormant to germinating spores. Our multidisciplinary approach-combining in vivo data, the analysis of spores morphological properties, and a proteome study-has shown that Crp is a central regulatory protein of the life cycle in S. coelicolor; and has identified spores proteins with statistically significant increased or decreased expression that should be listed as priority targets for further investigations on proteins that trigger both ends of the life cycle. [less ▲]

Detailed reference viewed: 70 (8 ULg)
Full Text
Peer Reviewed
See detailCrp of Streptomyces Coelicolor Is the Third Transcription Factor of the Large Crp-Fnr Superfamily Able to Bind Camp
Derouaux, Adeline ULg; Dehareng, Dominique ULg; Lecocq, Elke et al

in Biochemical and Biophysical Research Communications (2004), 325(3), 983-90

The chromosomal inactivation of the unique transcription factor of Streptomyces coelicolor that displays a cyclic-nucleotide-binding domain, Crp(Sco), led to a germination-defective phenotype similar to ... [more ▼]

The chromosomal inactivation of the unique transcription factor of Streptomyces coelicolor that displays a cyclic-nucleotide-binding domain, Crp(Sco), led to a germination-defective phenotype similar to the mutant of the adenylate cyclase gene (cya) unable to produce cAMP. By means of cAMP affinity chromatography we demonstrate the specific cAMP-binding ability of Crp(Sco), which definitely demonstrate that a Cya/cAMP/Crp system is used to trigger germination in S. coelicolor. However, electromobility shift assays with the purified Crp(Sco)-cAMP complex and the CRP-like cis-acting element of its own promoter failed. Moreover, we were unable to complement an Escherichia coli crp mutant in trans with Crp(Sco). The fact that Vfr from Pseudomonas aeruginosa and GlxR from Corynebacterium glutamicum could complement such an E. coli mutant suggests that the way Crp(Sco) interacts with DNA should mechanistically differ from its most similar members. This hypothesis was further supported by homology modelling of Crp(Sco) that confirmed an unusual organisation of the DNA-binding domain compared to the situation observed in Crp(Eco). [less ▲]

Detailed reference viewed: 100 (17 ULg)
Full Text
Peer Reviewed
See detailDeletion of a cyclic AMP receptor protein homologue diminishes germination and affects morphological development of Streptomyces coelicolor
Derouaux, Adeline ULg; Halici, S.; Nothaft, H. et al

in Journal of Bacteriology (2004), 186(6), 1893-1897

Open reading frame SCO3571 of Streptomyces coelicolor encodes a protein of the cyclic AMP (cAMP) receptor protein (CRP) superfamily of regulatory proteins. A mutant revealed a dramatic defect in ... [more ▼]

Open reading frame SCO3571 of Streptomyces coelicolor encodes a protein of the cyclic AMP (cAMP) receptor protein (CRP) superfamily of regulatory proteins. A mutant revealed a dramatic defect in germination, followed by growth delay and earlier sporulation. This phenotype correlates with those of an adenylate cyclase (cya) mutant that cannot synthesize cAMP. This finding suggests that S. coelicolor may use a Cya-cAMP-CRP system to trigger complex physiological processes such as morphogenesis. [less ▲]

Detailed reference viewed: 18 (3 ULg)