References of "Delory, Benjamin"
     in
Bookmark and Share    
Peer Reviewed
See detailBarley (Hordeum distichon L.) roots produce volatile aldehydes via the lipoxygenase/hydroperoxide lyase pathway with a strong age-dependent pattern
Delory, Benjamin ULg; Delaplace, Pierre ULg; du Jardin, Patrick ULg et al

Conference (2014, August 13)

In chemical ecology, the roles played by root-emitted volatile organic compounds (VOCs) in biotic interactions and the quantitative analysis of such chemicals in root tissues remain poorly documented. In ... [more ▼]

In chemical ecology, the roles played by root-emitted volatile organic compounds (VOCs) in biotic interactions and the quantitative analysis of such chemicals in root tissues remain poorly documented. In this context, this study aims at using a fully automated gas chromatography – mass spectrometry methodology allowing both identification and accurate quantification of VOCs produced by roots of a monocotyledonous plant species at five selected developmental stages from germination to the end of tillering. Results show that barley roots mainly produce four volatile aldehydes, namely hexanal, (E)-hex-2-enal, (E)-non-2-enal and (E,Z)-nona-2,6-dienal. These molecules are well-known linoleic and linolenic acid derivatives produced via the lipoxygenase/hydroperoxide lyase pathway of higher plants. Our findings contrast with analyses documented on aboveground barley tissues that mainly emit C6 aldehydes, alcohols and their corresponding esters. Multivariate statistical analyses performed on individual VOC concentrations indicate quantitative changes in the volatile profile produced by barley roots according to plant age. Barley roots produced higher total and individual VOC concentrations when young seminal roots emerged from the coleorhizae compared to older phenological stages. Moreover, results also show that the C6/C9 volatile aldehyde ratio was the lowest at the end of tillering while the maximum mean value of this ratio was reached in seven day-old barley roots. [less ▲]

Detailed reference viewed: 66 (34 ULg)
Full Text
See detailBelowground Chemical Ecology: The Case of Wireworms
Barsics, Fanny ULg; Delory, Benjamin ULg; Delaplace, Pierre ULg et al

Poster (2014, June)

Wireworms, clock-beetles' larvae (Coleoptera, Elateridae), are below ground pests of many crops. They cause dramatic yield losses worldwide. Research on their ecology is crucial to undertake innovative ... [more ▼]

Wireworms, clock-beetles' larvae (Coleoptera, Elateridae), are below ground pests of many crops. They cause dramatic yield losses worldwide. Research on their ecology is crucial to undertake innovative management strategies. In the field of chemical ecology, multitrophic interactions occurring in the rhizosphere are gaining increasing attention from entomologists and agronomists. Our research aims at unveiling the role of volatile organic compounds (VOC) involved in wireworms' foraging behavior, putatively leading to host localization and/or host recognition. [less ▲]

Detailed reference viewed: 19 (3 ULg)
Full Text
Peer Reviewed
See detailTemperature regimes and aphid density interactions differentially influence VOC emissions in Arabidopsis
Hien, Truong Thi Dieu ULg; Delory, Benjamin ULg; Vanderplanck, Maryse et al

in Arthropod-Plant Interactions (2014)

The effects of volatile emissions from plants exposed to individual abiotic and biotic stresses are well documented. However, the influence of multiple stresses on plant photosynthesis and defense ... [more ▼]

The effects of volatile emissions from plants exposed to individual abiotic and biotic stresses are well documented. However, the influence of multiple stresses on plant photosynthesis and defense responses, resulting in a variety of volatile profiles has received little attention. In this study, we investigated how temperature regimes in the presence and absence of the sucking insect Myzus persicae affected volatile organic compound emissions in Arabidopsis over three time periods (0-24 h, 24-48 h, and 48-72 h). Headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry was used to evaluate Arabidopsis volatile organic compounds. The results showed that under laboratory conditions, eight volatile classes [alcohols (mainly 2-ethyl-hexan-1-ol), ketone (6-methyl hept-5-en-2-one), esters (mainly (Z)-3-hexenyl acetate), aldehydes (mainly phenylacetaldehyde), isothiocyanates (mainly 4-methylpentyl isothiocyanate), terpenes (mainly (E,E)-α-farnesene), nitrile (5-(methylthio) pentanenitrile), and sulfide (dimethyl trisulfide)] were observed on plants exposed to stress combinations, whereas emissions of six volatile classes were observed during temperature stress treatments alone (with the exception of nitriles and sulfides). Aphid density at high temperature combinations resulted in significantly higher isothiocyanate, ester, nitrile and sulfide proportions. The results of the present study provide an insight into the effects of temperature - aphid interactions on plant volatile emissions. [less ▲]

Detailed reference viewed: 29 (6 ULg)
Full Text
Peer Reviewed
See detailQuantitative gas chromatography - mass spectrometry profiling of volatile organic compounds produced by barley (Hordeum distichon L.) roots according to plant age
Delory, Benjamin ULg; Delaplace, Pierre ULg; du Jardin, Patrick ULg et al

Poster (2014, February 07)

In chemical ecology, the roles played by root-emitted volatile organic compounds (VOCs) in biotic interactions and the quantitative analysis of such chemicals in root tissues remain poorly documented. In ... [more ▼]

In chemical ecology, the roles played by root-emitted volatile organic compounds (VOCs) in biotic interactions and the quantitative analysis of such chemicals in root tissues remain poorly documented. In this context, this study aims at developing a fully automated analytical methodology allowing both identification and accurate quantification of VOCs produced by roots of a monocotyledon plant species. Briefly, VOC emitted by crushed barley roots are successively trapped by dynamic headspace sampling on Tenax TA adsorbents, thermally desorbed and cryofocused, separated by gas chromatography (GC) and finally analysed by mass spectrometry (MS) in both SCAN and selected ion monitoring modes. Results show that barley roots mainly produce four volatile aldehydes, namely hexanal, (E)-hex-2-enal, (E)-non-2-enal and (E,Z)-nona-2,6-dienal. These molecules are well-known linoleic (C18:2) and linolenic (C18:3) acid derivatives produced via the lipoxygenase and the hydroperoxide lyase pathways of higher plants. Our findings contrast with analyses documented on aboveground barley tissues that mainly emit C6 aldehydes, alcohols and their derivative esters. Moreover, preliminary results indicate quantitative changes in the volatile profile contained in barley roots according to plant age. Multivariate statistical analyses are currently underway to quantitatively assess these changes using plants at five selected developmental stages ranging from germination to the end of tillering. [less ▲]

Detailed reference viewed: 44 (9 ULg)
Full Text
Peer Reviewed
See detailarchiDART: a R package allowing root system architecture analysis using Data Analysis of Root Tracings (DART) output files
Delory, Benjamin ULg; Baudson, Caroline ULg; Brostaux, Yves ULg et al

Poster (2014, February 07)

In 2010, Le Bot et al presented a free and open-access software (Data Analysis of Root Tracings - DART) allowing the analysis of complex root system architectures from captured images, particularly across ... [more ▼]

In 2010, Le Bot et al presented a free and open-access software (Data Analysis of Root Tracings - DART) allowing the analysis of complex root system architectures from captured images, particularly across time series. Using this software, a user has to manually identify roots as a set of links. After vectorization of a root system, three final data sets (RAC, TPS and LIE) can be exported as table files containing several attributes for (a) each individual root (e.g. root length), (b) each observation day or (c) each point used to construct the vectorized root system respectively. These data sets can finally be used either to calculate derived root system architecture (RSA) parameters or to draw the root system architecture at selected observation dates. However when an experiment involves the analysis and comparison of many root systems, the calculation of RSA parameters for each data set and the drawing of the corresponding vectorized root systems become time-consuming. In this context, we developed a R package, called archiDART, allowing both the automatic calculation of common root architecture parameters and the X-Y plotting of vectorized root systems for selected observation dates. [less ▲]

Detailed reference viewed: 37 (13 ULg)
Full Text
Peer Reviewed
See detailDevelopment of an experimental device allowing plant-plant interaction studies and in situ dynamic trapping of volatile organic compounds emitted by barley (Hordeum distichon L.) roots
Delory, Benjamin ULg; Delaplace, Pierre ULg; Fauconnier, Marie-Laure ULg et al

in Communications in Agricultural and Applied Biological Sciences (2013, February 08), 78(1), 97-102

In response to wounding or herbivore attack, leaves and roots of higher plants release volatile organic compounds (VOCs). To date, VOCs analysis and plant−plant interaction studies have been mainly ... [more ▼]

In response to wounding or herbivore attack, leaves and roots of higher plants release volatile organic compounds (VOCs). To date, VOCs analysis and plant−plant interaction studies have been mainly performed on aboveground plant tissues, leaving the roles played by root VOCs in plant−plant interaction unexplored. In this context, this project aims at setting up an original experimental device allowing both dynamic trapping of VOCs emitted by mechanically damaged H. distichon roots and the study of the roles played by root VOCs in intra and interspecific plant−plant interactions. The experimental device consists of Barley seedlings cultivated in closed PTFE reactors filled with wet sand. Before being analysed by gas chromatography−mass spectrometry, root VOCs are trapped via a dynamic system on Tenax cartridges using a charcoal-filtered and humidified air. Preliminary results show that 7 day-old wounded Barley roots emit C9 fatty acid derivatives (E-non-2-enal and nona-2,6-dienal) as major compounds, contrasting with aboveground plant tissues that mainly emit C6 alcohols, aldehydes, and their derivative esters. For plant−plant interaction studies, receiver plants are exposed to an airflow enriched with VOCs from root damaged Barley plants of the same age. [less ▲]

Detailed reference viewed: 131 (28 ULg)
Full Text
Peer Reviewed
See detailDescribing and modelling root and shoot growth and development in Brachypodium distachyon (L.) Beauv
Delory, Benjamin ULg; Delaplace, Pierre ULg; Gfeller, Aurélie ULg et al

Poster (2011, October 19)

Due to its small size, its short developmental cycle and its close phylogenetic relationship with the Triticeae tribe, Brachypodium distachyon (L.) Beauv. has been proposed as a model species for ... [more ▼]

Due to its small size, its short developmental cycle and its close phylogenetic relationship with the Triticeae tribe, Brachypodium distachyon (L.) Beauv. has been proposed as a model species for temperate cereals. In this context, this work aims to describe and model root and shoot growth and development of B. distachyon (Bd21-1) grown under controlled environmental conditions [22°C, 65% RH, 20h light, 95 µmol.m-2.s-1 (PAR, LED lighting)]. For this purpose, vernalized caryopses were sown in a substrate consisting of vermiculite and compost (80/20, v/v). Growth and development of the above and belowground parts were monitored for 70 days. Dry and fresh masses of plant organs were measured every seven days from sowing. Biomasses of adventitious and seminal roots were measured separately. The number of spikelets on the main stem and on tillers was also counted on plants aged of 70 days. The modelling of root and shoot growth was achieved by calibrating sigmoidal growth models to the mean biomass values measured at each day of analysis. For each plant organ, the growth model selected was the one with the lowest residual variance. Finally, developmental stages identified for B. distachyon were compared with those defined for cereal crops by Zadoks et al. (1974). Maximum rates of fresh and dry shoot biomass production were 29,5 and 14,2 mg.day-1 respectively. Based on modelling, these values seem to be reached 49 and 72 days after sowing. Results also show that the fresh mass of adventitious roots at day 42 is significantly higher than that of seminal roots. Maximum rates of fresh and dry root biomass production were 6,9 and 0,8 mg.day-1 respectively, and were reached after 37 and 43 days. [less ▲]

Detailed reference viewed: 56 (19 ULg)
Full Text
See detailLes volatils racinaires de l’orge : un langage souterrain ?
Barsics, Fanny ULg; Gfeller, Aurélie ULg; Fauconnier, Marie-Laure ULg et al

Scientific conference (2011, October 13)

Cette présentation résume les avancées du projet Rhizovol après une année de travaux de recherche.

Detailed reference viewed: 74 (31 ULg)