References of "Deleuze, Christelle"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailSelective reduction of C = C double bonds in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of microcystins
Deleuze, Christelle ULg; De Pauw, Edwin ULg; Quinton, Loïc ULg

in European Journal of Mass Spectrometry (Chichester, England) (2010), 16(1), 91-9

Cyanobacteria are photosynthetic bacteria encountered in various aquatic environments. Some of them are able to produce powerful toxins called cyanotoxins. Among cyanotoxins, microcystins (MCs) constitute ... [more ▼]

Cyanobacteria are photosynthetic bacteria encountered in various aquatic environments. Some of them are able to produce powerful toxins called cyanotoxins. Among cyanotoxins, microcystins (MCs) constitute a group of closely related cyclic heptapeptides. Their sequences are made up of classical amino acids as well as post- translational modified ones. Interestingly, in vivo metabolism of microcystins seems to be greatly dependent on various minor structural differences and particularly those of the seventh amino acid, which can be either dehydroalanine (or a derivative), dehydroaminobutyric acid (or a derivative), serine or alanine. As a consequence, microcystins have been classified on the basis of the nature of this singular amino acid. A major difficulty in the classification of such toxins is that some of them share the same molecular masses and the same molecular formulas. Consequently, a simple mass measurement is not sufficient to determine the structure and the class of a toxin of interest. Heavy and expensive techniques are used to classify them, such as multi-dimensional nuclear magnetic resonance and amino acid analysis. In this work, a new matrix-assisted laser desorption/ionization time-of-flight method leading to an easy classification of MCs is proposed. The methodology relies on the reductive properties of the matrix 1,5-diaminonaphtalene (1,5-DAN) which appears to be able to selectively reduce the double carbon-carbon bond belonging to the seventh amino acid. Moreover, the yield of reduction seems to be influenced by the degree of substitution of this double bond, allowing a discrimination between dehydroalanine and dehydroaminobutyric acid. This selective reduction was confirmed by the study of three synthetic peptides by mass spectrometry and tandem mass spectrometry. According to these results, the use of reductive matrices seems to be promising in the study of microcystins and in their classification. More generally, 1,5-DAN allows the selective reduction of double carbon-carbon bonds. This property could also be employed in the characterization of others types of compound displaying double bonds (petrochemistry, metabolomics....). [less ▲]

Detailed reference viewed: 83 (19 ULg)
Full Text
See detailMALDI-Top-Down of Proteins: Overview and Applications
Quinton, Loïc ULg; Demeure, Kevin ULg; Resemann, Anja et al

Conference (2009, June)

Detailed reference viewed: 16 (5 ULg)
Full Text
Peer Reviewed
See detailDevelopment and validation of a multi-residue method for pesticide determination in honey using on-column liquid-liquid extraction and liquid chromatography-tandem mass spectrometry
Pirard, Catherine; Widart, Joëlle ULg; Nguyen, Bach Kim ULg et al

in Journal of Chromatography. A (2007), 1152(1-2), 116-123

We report on the development and validation under ISO 17025 criteria of a multi-residue confirmatory method to identify and quantify 17 widely chemically different pesticides (insecticides: Carbofuran ... [more ▼]

We report on the development and validation under ISO 17025 criteria of a multi-residue confirmatory method to identify and quantify 17 widely chemically different pesticides (insecticides: Carbofuran, Methiocarb, Pirimicarb, Dimethoate, Fipronil, Imidacloprid; herbicides: Amidosulfuron, Rimsulfuron, Atrazine, Simazine, Chloroturon, Linuron, Isoxaflutole, Metosulam; fungicides: Diethofencarb) and 2 metabolites (Methiocarb sulfoxide and 2-Hydroxytertbutylazine) in honey. This method is based on an on-column liquid liquid extraction (OCLLE) using diatomaceous earth as inert solid support and liquid chromatography (LC) coupled to mass spectrometry (MS) operating in tandem mode (MS/MS). Method specificity is ensured by checking retention time and theoretical ratio between two transitions from a single precursor ion. Linearity is demonstrated all along the range of concentration that was investigated, from 0.1 to 20 ng g(-1) raw honey, with correlation coefficients ranging from 0.921 to 0.999, depending on chemicals. Recovery rates obtained on home-made quality control samples are between 71 and 90%, well above the range defined by the EC/657/2002 document, but in the range we had fixed to ensure proper quantification, as levels found in real samples could not be corrected for recovery rates. Reproducibility is found to be between 8 and 27%. Calculated CC alpha and CC beta (0.0002-0.943 mg g(-1) for CC alpha, and 0.0002-1.232 ng g(-1) for CCP) show the good sensitivity attained by this rnulti-residue analytical method. The robustness of the method has been tested in analyzing more than 100 raw honey samples collected from different areas in Belgium, as well as some wax and bee samples, with a slightly adapted procedure. (C) 2007 Elsevier B.V. All rights reserved. [less ▲]

Detailed reference viewed: 139 (28 ULg)