References of "Dejardin, Emmanuel"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailInduction of the Alternative NF-{kappa}B Pathway by Lymphotoxin {alpha}{beta} (LT{alpha}{beta}) Relies on Internalization of LT{beta} Receptor
Ganeff, Corine; Remouchamps, Caroline ULg; Boutaffala, Layla et al

in Molecular & Cellular Biology (2011), 21

Several tumor necrosis factor receptor (TNFR) family members activate both the classical and the alternative NF-κB pathways. However, how a single receptor engages these two distinct pathways is still ... [more ▼]

Several tumor necrosis factor receptor (TNFR) family members activate both the classical and the alternative NF-κB pathways. However, how a single receptor engages these two distinct pathways is still poorly understood. Using lymphotoxin β receptor (LTβR) as a prototype, we showed that activation of the alternative, but not the classical, NF-κB pathway relied on internalization of the receptor. Further molecular analyses revealed a specific cytosolic region of LTβR essential for its internalization, TRAF3 recruitment, and p100 processing. Interestingly, we found that dynamin-dependent, but clathrin-independent, internalization of LTβR appeared to be required for the activation of the alternative, but not the classical, NF-κB pathway. In vivo, ligand-induced internalization of LTβR in mesenteric lymph node stromal cells correlated with induction of alternative NF-κB target genes. Thus, our data shed light on LTβR cellular trafficking as a process required for specific biological functions of NF-κB. [less ▲]

Detailed reference viewed: 57 (14 ULg)
Full Text
Peer Reviewed
See detailBiology and Signal Transduction pathways of the Lymphotoxin-αβ/LTβR system
Remouchamps, Caroline ULg; Boutaffala, Layla; Ganeff, Corinne et al

in Cytokine & Growth Factor Reviews (2011), 22

This review focuses on the biological functions and signalling pathways activated by Lymphotoxin α (LTα)/Lymphotoxin β (LTβ) and their receptor LTβR. Genetic mouse models shed light on crucial roles for ... [more ▼]

This review focuses on the biological functions and signalling pathways activated by Lymphotoxin α (LTα)/Lymphotoxin β (LTβ) and their receptor LTβR. Genetic mouse models shed light on crucial roles for LT/LTβR to build and to maintain the architecture of lymphoid organs and to ensure an adapted immune response against invading pathogens. However, chronic inflammation, autoimmunity, cell death or cancer development are disorders that occur when the LT/LTβR system is twisted. Biological inhibitors, such as antagonist antibodies or decoy receptors, have been developed and used in clinical trials for diseases associated to the LT/LTβR system. Recent progress in the understanding of cellular trafficking and NF-κB signaling pathways downstream of LTα/LTβ may bring new opportunities to develop therapeutics that target the pathological functions of these cytokines. [less ▲]

Detailed reference viewed: 57 (27 ULg)
Peer Reviewed
See detailThe hidden function of NIK (NF-κB-Inducing Kinase) in cell death
Boutaffala, Layla; Bertrand, Mathieu; Remouchamps, Caroline ULg et al

Conference (2011)

Detailed reference viewed: 22 (5 ULg)
Peer Reviewed
See detailTNFL–Induced p100 processing (TIPP) relies on the internalization of the cognate TNFR
Ganeff, Corinne; Galopin, Géraldine; Remouchamps, Caroline ULg et al

Conference (2010, January)

Detailed reference viewed: 4 (1 ULg)
Peer Reviewed
See detailTNFR-induced activation of MAP3K14/NIK enhances TNFR1-induced cell death
Boutafalla, Layla; Bertrand, Mathieu; Remouchamps, Caroline ULg et al

Conference (2010)

Detailed reference viewed: 24 (2 ULg)
Peer Reviewed
See detailInterplay between non-death and death TNFR in inflammation.
Dejardin, Emmanuel ULg

Conference (2010)

Detailed reference viewed: 7 (2 ULg)
Peer Reviewed
See detailThe lymphotoxin-β receptor induces different patterns of gene expression via two NF-κB pathways
Dejardin, Emmanuel ULg; Droin, Nathalie; Delhase, Mireille et al

Conference (2009, October 30)

Detailed reference viewed: 11 (5 ULg)
Full Text
Peer Reviewed
See detailMatrix Metalloproteinase-9 gene induction by a truncated oncogenic NF-κB2 protein involves the recruitment of MLL1 and MLL2 H3K4 histone methyltransferase complexes.
Robert, Isabelle ULg; Aussems, Marie ULg; Keutgens, Aurore ULg et al

in Oncogene (2009), 28(13), 1626-1638

Constitutive nuclear factor (NF)-kappaB activation in haematological malignancies is caused in several cases by loss of function mutations within the coding sequence of NF-kappaB inhibitory molecules such ... [more ▼]

Constitutive nuclear factor (NF)-kappaB activation in haematological malignancies is caused in several cases by loss of function mutations within the coding sequence of NF-kappaB inhibitory molecules such as IkappaBalpha or p100. Hut-78, a truncated form of p100, constitutively generates p52 and contributes to the development of T-cell lymphomas but the molecular mechanism underlying this oncogenic potential remains unclear. We show here that MMP9 gene expression is induced through the alternative NF-kappaB-activating pathway in fibroblasts and also on Hut-78 or p52 overexpression in fibroblasts as well as in lymphoma cells. p52 is critical for Hut-78-mediated MMP9 gene induction as a Hut-78 mutant as well as other truncated NF-kappaB2 proteins that are not processed into p52 failed to induce the expression of this metalloproteinase. Conversely, MMP9 gene expression is impaired in p52-depleted HUT-78 cells. Interestingly, MLL1 and MLL2 H3K4 methyltransferase complexes are tethered by p52 on the MMP9 but not on the IkappaBalpha promoter, and the H3K4 trimethyltransferase activity recruited on the MMP9 promoter is impaired in p52-depleted HUT-78 cells. Moreover, MLL1 and MLL2 are associated with Hut-78 in a native chromatin-enriched extract. Thus, we identified a molecular mechanism by which the recruitment of a H3K4 histone methyltransferase complex on the promoter of a NF-kappaB-dependent gene induces its expression and potentially the invasive potential of lymphoma cells harbouring constitutive activity of the alternative NF-kappaB-activating pathway. [less ▲]

Detailed reference viewed: 122 (40 ULg)
Full Text
Peer Reviewed
See detailThe prevention of spontaneous apoptosis of follicular lymphoma B cells by a follicular dendritic cell line: involvement of caspase-3, caspase-8 and c-FLIP.
Goval, Jean-Jacques; Thielen, Caroline ULg; Bourguignon, Caroline et al

in Haematologica (2008), 93(8), 1169-77

BACKGROUND: Follicular lymphoma, the neoplastic counterpart of germinal center B cells, typically recapitulates a follicular architecture. Several observations point to the crucial role of the cellular ... [more ▼]

BACKGROUND: Follicular lymphoma, the neoplastic counterpart of germinal center B cells, typically recapitulates a follicular architecture. Several observations point to the crucial role of the cellular microenvironment in the development and/or progression of follicular lymphoma cells in vivo. The aim of our study was to characterize the spontaneous apoptosis of follicular lymphoma cells in vitro, and the modulation of this apoptosis by follicular dendritic cells. DESIGN AND METHODS: We used a cell line derived from follicular dendritic cells to model the functional interactions of these cells and lymphoma cells in co-culture. Follicular lymphoma cells were isolated from tissue biopsies. Apoptosis was quantified by flow cytometry and apoptotic pathways were investigated by western blotting. RESULTS: The spontaneous apoptosis of follicular lymphoma cells in vitro involves the activation of caspases-3 and -8 but not of caspase-9, occurs despite persistent high levels of BCL-2 and MCL-1, and is associated with down-regulation of c-FLIP(L). Spontaneous apoptosis of follicular lymphoma cells is partially prevented by co-culture with the follicular dendritic cells, which prevents activation of caspase-8, caspase-3 and induces an upregulation of c-FLIP(L). Using neutralizing antibodies, we demonstrated that interactions involving CD54 (ICAM-1), CD106 (VCAM-1) and CD40 are implicated in this biological process. CONCLUSIONS: Follicular dendritic cells constitute a useful tool to study the functional interactions between follicular lymphoma cells and follicular dendritic cells in vitro. Understanding the molecular mechanisms involved in these protective interactions may lead to the identification of therapeutic agents that might suppress the survival and growth of follicular lymphoma cells. [less ▲]

Detailed reference viewed: 59 (5 ULg)
Full Text
Peer Reviewed
See detailDeregulated expression of pro-survival and pro-apoptotic p53-dependent genes upon Elongator deficiency in colon cancer cells.
Cornez, Isabelle ULg; Creppe, Catherine ULg; Gillard, Magali ULg et al

in Biochemical Pharmacology (2008), 75

Elongator, a multi-subunit complex assembled by the IkappaB kinase-associated protein (IKAP)/hELP1 scaffold protein is involved in transcriptional elongation in the nucleus as well as in tRNA ... [more ▼]

Elongator, a multi-subunit complex assembled by the IkappaB kinase-associated protein (IKAP)/hELP1 scaffold protein is involved in transcriptional elongation in the nucleus as well as in tRNA modifications in the cytoplasm. However, the biological processes regulated by Elongator in human cells only start to be elucidated. Here we demonstrate that IKAP/hELP1 depleted colon cancer-derived cells show enhanced basal expression of some but not all pro-apoptotic p53-dependent genes such as BAX. Moreover, Elongator deficiency causes increased basal and daunomycin-induced expression of the pro-survival serum- and glucocorticoid-induced protein kinase (SGK) gene through a p53-dependent pathway. Thus, our data collectively demonstrate that Elongator deficiency triggers the activation of p53-dependent genes harbouring opposite functions with respect to apoptosis. [less ▲]

Detailed reference viewed: 59 (19 ULg)
Full Text
Peer Reviewed
See detailLipopolysaccharide-mediated interferon regulatory factor activation involves TBK1-IKK epsilon-dependent lys(63)-linked polyubiquitination and phosphorylation of TANK/I-TRAF
Gatot, Jean-Stéphane; Gioia, Romain ULg; Chau, Tieu-Lan ULg et al

in Journal of Biological Chemistry (2007), 282(43), 31131-31146

Type I interferon gene induction relies on IKK-related kinase TBK1 and IKK epsilon-mediated phosphorylations of IRF3/7 through the Toll-like receptor-dependent signaling pathways. The scaffold proteins ... [more ▼]

Type I interferon gene induction relies on IKK-related kinase TBK1 and IKK epsilon-mediated phosphorylations of IRF3/7 through the Toll-like receptor-dependent signaling pathways. The scaffold proteins that assemble these kinase complexes are poorly characterized. We show here that TANK/ITRAF is required for the TBK1- and IKK epsilon-mediated IRF3/7 phosphorylations through some Toll-like receptor-dependent pathways and is part of a TRAF3-containing complex. Moreover, TANK is dispensable for the early phase of double-stranded RNA-mediated IRF3 phosphorylation. Interestingly, TANK is heavily phosphorylated by TBK1-IKK epsilon upon lipopolysaccharide stimulation and is also subject to lipopolysaccharide- and TBK1-IKK epsilon-mediated Lys(63)-linked polyubiquitination, a mechanism that does not require TBK1-IKK epsilon kinase activity. Thus, we have identified TANK as a scaffold protein that assembles some but not all IRF3/7-phosphorylating TBK1-IKK epsilon complexes and demonstrated that these kinases possess two functions, namely the phosphorylation of both IRF3/7 and TANK as well as the recruitment of an E3 ligase for Lys63-linked polyubiquitination of their scaffold protein, TANK. [less ▲]

Detailed reference viewed: 68 (17 ULg)
Full Text
Peer Reviewed
See detailFurther insights in the mechanisms of interleukin-1beta stimulation of osteoprotegerin in osteoblast-like cells
Lambert, Cécile ULg; Oury, Cécile ULg; Dejardin, Emmanuel ULg et al

in Journal of Bone and Mineral Research (2007), 22(9), 1350-1361

The mechanisms of IL-1beta stimulation of OPG were studied in more detail. Whereas p38 and ERK activation was confirmed to be needed, NF-kappaB was not necessary for this regulation. We also found that ... [more ▼]

The mechanisms of IL-1beta stimulation of OPG were studied in more detail. Whereas p38 and ERK activation was confirmed to be needed, NF-kappaB was not necessary for this regulation. We also found that OPG production after IL-1beta stimulation was not sufficient to block TRAIL-induced apoptosis in MG-63 cells. INTRODUCTION: Osteoprotegerin (OPG) plays a key role in the regulation of bone resorption and is stimulated by interleukin (IL)-1beta. Herein, we defined the mechanisms of IL-1beta stimulation of OPG focusing on the potential involvement of MAPK and NF-kappaB. We also examined whether OPG production in response to IL-1beta influences TRAIL-induced apoptosis in MG-63 cells. MATERIALS AND METHODS: OPG mRNA levels in MG-63 cells were quantified by real-time RT-PCR and protein levels of OPG and IL-6 by ELISA. Cell viability was assessed using the methyltetrazidium salt (MTS) reduction assay. The role of the MAPK pathway was studied by both Western blotting and the use of specific chemical inhibitors. NF-kappaB function was studied using BAY 11-7085 and by siRNA transfection to inhibit p65 synthesis. Transcription mechanisms were analyzed by transiently transfecting MG-63 cells with OPG promoter constructs. Post-transcriptional effects were examined by using cycloheximide and actinomycin D. RESULTS: MG-63 cells treatment with IL-1beta resulted in the phosphorylation of c-Jun NH(2)-terminal kinase (JNK), p38, and extracellular signal-regulated kinase (ERK). The use of the specific inhibitors showed that p38 and ERK but not JNK were needed for IL-1beta-induced OPG production. In contrast, NF-kappaB was not essential for IL-1beta induction of OPG. We also showed a small transcriptional and a possible post-transcriptional or translational regulation of OPG by IL-1beta. Exogenous OPG blocked TRAIL-induced apoptosis, but IL-1beta induction of OPG did not influence TRAIL-induced cell death. CONCLUSIONS: IL-1beta stimulates OPG production by mechanisms dependent on p38 and ERK. In contrast, NF-kappaB was not essential for this regulation. Although the relevance of IL-1beta stimulation of OPG is still not fully understood, our data showed that IL-1beta stimulation of OPG does not modify TRAIL-induced cell death. [less ▲]

Detailed reference viewed: 52 (19 ULg)
Full Text
Peer Reviewed
See detailPromoter-dependent effect of IKK alpha on NF-kappa B/p65 DNA binding
Gloire, Geoffrey ULg; Horion, Julie; El Mjiyad, Nadia ULg et al

in Journal of Biological Chemistry (2007), 282(29), 21308-21318

IKK alpha regulates many chromatin events in the nuclear phase of the NF-kappa B program, including phosphorylation of histone H3 and removal of co-repressors from NF-kappa B-dependent promoters. However ... [more ▼]

IKK alpha regulates many chromatin events in the nuclear phase of the NF-kappa B program, including phosphorylation of histone H3 and removal of co-repressors from NF-kappa B-dependent promoters. However, all of the nuclear functions of IKK alpha are not understood. In this study, using mouse embryonic fibroblasts IKK alpha knock-out and reexpressing IKK alpha after retroviral transduction, we demonstrate that IKK alpha contributes to NF-kappa B/p65 DNA binding activity on an exogenous kappa B element and on some, but not all, endogenous NF-kappa B-target promoters. Indeed, p65 chromatin immunoprecipitation assays revealed that IKK alpha is crucial for p65 binding on kappa B sites of icam-1 and mcp-1 promoters but not on i kappa b alpha promoter. The mutation of IKK alpha putative nuclear localization sequence, which prevents its nuclear translocation, or of crucial serines in the IKK alpha activation loop completely inhibits p65 binding on icam-1 and mcp-1 promoters and rather enhances p65 binding on the i kappa b alpha promoter. Further molecular studies demonstrated that the removal of chromatin-bound HDAC3, a histone deacetylase inhibiting p65 DNA binding, is differentially regulated by IKK alpha in a promoter-specific manner. Indeed, whereas the absence of IKK alpha induces HDAC3 recruitment and repression on the icam-1 promoter, it has an opposite effect on the i kappa b alpha promoter, where a better p65 binding occurs. We conclude that nuclear IKK alpha is required for p65 DNA binding in a gene-specific manner. [less ▲]

Detailed reference viewed: 58 (9 ULg)
See detailPolyubiquitination of the scaffold protein tank/I-traf: implications for the TLR-mediated signalling pathways
Gatot, J. S.; Gioia, R.; Chau, Tieu-Lan ULg et al

Poster (2007, March)

Detailed reference viewed: 6 (4 ULg)
Full Text
Peer Reviewed
See detailVaricella-zoster virus modulates NF-kappaB recruitment on selected cellular promoters.
El Mjiyad, Nadia ULg; Bontems, Sébastien ULg; Gloire, Geoffrey ULg et al

in Journal of Virology (2007), 81(23), 13092-104

Intercellular adhesion molecule 1 (ICAM-1) expression is down-regulated in the center of cutaneous varicella lesions despite the expression of proinflammatory cytokines such as gamma interferon and tumor ... [more ▼]

Intercellular adhesion molecule 1 (ICAM-1) expression is down-regulated in the center of cutaneous varicella lesions despite the expression of proinflammatory cytokines such as gamma interferon and tumor necrosis factor alpha (TNF-alpha). To study the molecular basis of this down-regulation, the ICAM-1 induction of TNF-alpha was analyzed in varicella-zoster virus (VZV)-infected melanoma cells (MeWo), leading to the following observations: (i) VZV inhibits the stimulation of icam-1 mRNA synthesis; (ii) despite VZV-induced nuclear translocation of p65, p52, and c-Rel, p50 does not translocate in response to TNF-alpha; (iii) the nuclear p65 present in VZV-infected cells is no longer associated with p50 and is unable to bind the proximal NF-kappaB site of the icam-1 promoter, despite an increased acetylation and accessibility of the promoter in response to TNF-alpha; and (iv) VZV induces the nuclear accumulation of the NF-kappaB inhibitor p100. VZV also inhibits icam-1 stimulation of TNF-alpha by strongly reducing NF-kappaB nuclear translocation in MRC5 fibroblasts. Taken together, these data show that VZV interferes with several aspects of the immune response by inhibiting NF-kappaB binding and the expression of target genes. Targeting NF-kappaB activation, which plays a central role in innate and adaptive immune responses, leads to obvious advantages for the virus, particularly in melanocytes, which are a site of viral replication in the skin. [less ▲]

Detailed reference viewed: 89 (17 ULg)
Full Text
Peer Reviewed
See detailThe alternative NF-kappa B pathway from biochemistry to biology: Pitfalls and promises for future drug development
Dejardin, Emmanuel ULg

in Biochemical Pharmacology (2006), 72(9), 1161-1179

The past two decades have led to a tremendous work on the transcription factor NF-kappa B and its molecular mechanisms of activation. The nuclear translocation of NF-kappa B is controlled by two main ... [more ▼]

The past two decades have led to a tremendous work on the transcription factor NF-kappa B and its molecular mechanisms of activation. The nuclear translocation of NF-kappa B is controlled by two main pathways: the classical and the alternative NF-kappa B pathways. The classical NF-kappa B pathway activates the IKK complex that controls the inducible degradation Of Most I kappa B family members that are I kappa B alpha, I kappa B beta, I kappa B epsilon and p105. The alternative NF-kappa B pathway induces p100 processing and p52 generation through the activation of at least two kinases, which are NIK and IKK alpha. Genetic studies have shown that IKK gamma is dispensable for the alternative pathway, which suggests the existence of an alternative IKK alpha-containing complex. It is noteworthy that activation of particular p52 heterodimers like p52/RelB requires solely the alternative pathway while activation of p52/p65 or p52/c-Rel involves a "hybrid pathway". Among others, LT beta R, BAFF-R, CD40 and RANK have the ability to induce the alternative pathway. The latter plays some roles in biological functions controlled by these receptors, which are the development of secondary lymphoid organs, the proliferation, survival and maturation of B cell, and the osteoclastogenesis. Exacerbated activation of the alternative pathway is potentially associated to a wide range of disorders like rheumatoid arthritis, ulcerative colitis or B cell lymphomas. Therefore, inhibitors of the alternative pathway could be valuable tools for the treatment of inflammatory disorders and cancers. (c) 2006 Elsevier Inc. All rights reserved. [less ▲]

Detailed reference viewed: 14 (2 ULg)
Full Text
Peer Reviewed
See detailExtending the nuclear roles of I kappa B kinase subunits
Gloire, Geoffrey ULg; Dejardin, Emmanuel ULg; Piette, Jacques ULg

in Biochemical Pharmacology (2006), 72(9), 1081-1089

The transcription factor NF-kappa B plays a key role in a wide variety of cellular processes such as innate and adaptive immunity, cellular proliferation, apoptosis and development. In unstimulated cells ... [more ▼]

The transcription factor NF-kappa B plays a key role in a wide variety of cellular processes such as innate and adaptive immunity, cellular proliferation, apoptosis and development. In unstimulated cells, NF-kappa B is sequestered in the cytoplasm through its tight association with inhibitory proteins called I kappa BS, comprising notably I kappa B alpha. A key step in NF-kappa B activation is the phosphorylation Of I kappa B alpha by the so-called I kappa B kinase (IKK) complex, which targets the inhibitory protein for proteasomal degradation and allows the freed NF-kappa B to enter the nucleus where it can transactivate its target genes. The IKK complex is composed of two catalytic subunits called IKK alpha and IKK beta, and a regulatory subunit called NEMO/IKK gamma. Despite their key role in mediating I kappa B alpha phosphorylation in the cytoplasm, recent works have provided evidence that IKK subunits also translocate into the nucleus to regulate NF-kappa B-dependent and -independent gene expression, paving the way of a novel and exciting field of research. In this review, we will describe the current knowledge in that research area. (c) 2006 Elsevier Inc. All rights reserved. [less ▲]

Detailed reference viewed: 17 (1 ULg)
Full Text
Peer Reviewed
See detailGlycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1
Maurer, Ulrich; Charvet, Céline; Wagman, Allan et al

in Molecular Cell (2006), 21(6), 749-760

We investigated the role of glycogen synthase kinase-3 (GSK-3), which is inactivated by AKT, for its role in the regulation of apoptosis. Upon IL-3 withdrawal, protein levels of MCL-1 decreased but were ... [more ▼]

We investigated the role of glycogen synthase kinase-3 (GSK-3), which is inactivated by AKT, for its role in the regulation of apoptosis. Upon IL-3 withdrawal, protein levels of MCL-1 decreased but were sustained by pharmacological inhibition of GSK-3, which prevented cytochrome c release and apoptosis. MCL-1 was phosphorylated by GSK-3 at a conserved GSK-3 phosphorylation site (S159). S159 phosphorylation of MCL-1 was induced by IL-3 withdrawal or PI3K inhibition and prevented by AKT or inhibition of GSK-3, and it led to increased ubiquitinylation and degradation of MCLA. A phosphorylation-site mutant (MCL-1(S159A)), expressed in IL-3-dependent cells, showed enhanced stability upon IL-3 withdrawal and conferred increased protection from apoptosis compared to wild-type MCL-1. The results demonstrate that the control of MCLA stability by GSK-3 is an important mechanism for the regulation of apoptosis by growth factors, PI3K, and AKT. [less ▲]

Detailed reference viewed: 26 (0 ULg)
Full Text
Peer Reviewed
See detailGSK3-Mediated BCL-3 phosphorylation modulates its degradation and its oncogenicity
Viatour, Patrick ULg; Dejardin, Emmanuel ULg; Warnier, Michael et al

in Molecular Cell (2004), 16(1), 35-45

The oncoprotein BCL-3 is a nuclear transcription factor that activates NF-kappaB target genes through formation of heterocomplexes with p50 or p52. BCL-3 is phosphorylated in vivo, but specific BCL-3 ... [more ▼]

The oncoprotein BCL-3 is a nuclear transcription factor that activates NF-kappaB target genes through formation of heterocomplexes with p50 or p52. BCL-3 is phosphorylated in vivo, but specific BCL-3 kinases have not been identified so far. In this report, we show that BCL-3 is a substrate for the protein kinase GSK3 and that GSK3-mediated BCL-3 phosphorylation, which is inhibited by Akt activation, targets its degradation through the proteasome pathway. This phosphorylation modulates its association with HDAC1, -3, and -6 and attenuates its oncogenicity by selectively controlling the expression of a subset of newly identified target genes such as SLPI and CxcI1. Our results therefore suggest that constitutive BCL-3 phosphorylation by GSK3 regulates BCL-3 turnover and transcriptional activity. [less ▲]

Detailed reference viewed: 35 (11 ULg)