References of "Degrune, Florine"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailDiversity of Bacterial Communities in a Profile of a Winter Wheat Field: Known and Unknown Members
Stroobants, Aurore ULg; Degrune, Florine ULg; Olivier, Claire et al

in Microbial Ecology (2014)

In soils, bacteria are very abundant and diverse. They are involved in various agro-ecosystem processes such as the nitrogen cycle, organic matter degradation, and soil formation. Yet, little is known ... [more ▼]

In soils, bacteria are very abundant and diverse. They are involved in various agro-ecosystem processes such as the nitrogen cycle, organic matter degradation, and soil formation. Yet, little is known about the distribution and composition of bacterial communities through the soil profile, particularly in agricultural soils, as most studies have focused only on topsoils or forest and grassland soils. In the present work, we have used bar-coded pyrosequencing analysis of the V3 region of the 16S rRNA gene to analyze bacterial diversity in a profile (depths 10, 25, and 45 cm) of a well-characterized field of winter wheat. Taxonomic assignment was carried out with the Ribosomal Database Project (RDP) Classifier program with three bootstrap scores: a main run at 0.80, a confirmation run at 0.99, and a run at 0 to gain information on the unknown bacteria. Our results show that biomass and bacterial quantity and diversity decreased greatly with depth. Depth also had an impact, in terms of relative sequence abundance, on 81 % of the most represented taxonomic ranks, notably the ranks Proteobacteria, Bacteroidetes, Actinobacteridae, and Acidobacteria. Bacterial community composition differed more strongly between the topsoil (10 and 25 cm) and subsoil (45 cm) than between levels in the topsoil, mainly because of shifts in the carbon, nitrogen, and potassium contents. The subsoil also contained more unknown bacteria, 53.96 % on the average, than did the topsoil, with 42.06 % at 10 cm and 45.59 % at 25 cm. Most of these unknown bacteria seem to belong to Deltaproteobacteria, Actinobacteria, Rhizobiales, and Acidobacteria. [less ▲]

Detailed reference viewed: 21 (5 ULg)
Full Text
See detailHow to reveal the amazing soil microbial diversity ?
Degrune, Florine ULg

Scientific conference (2014, May 22)

Detailed reference viewed: 8 (0 ULg)
Full Text
Peer Reviewed
See detailImpact of agricultural practices on soil microbial communities in Belgium
Degrune, Florine ULg; Taminiau, Bernard ULg; Dufrêne, Marc ULg et al

Poster (2013, December 11)

The use of fertilizers in agricultural soils is becoming a real environmental issue (an obvious example is eutrophication caused by leaching of phosphorus and nitrates). Much research has focused on ... [more ▼]

The use of fertilizers in agricultural soils is becoming a real environmental issue (an obvious example is eutrophication caused by leaching of phosphorus and nitrates). Much research has focused on finding ways to reduce the use of chemicals, and investigating microbial life may lead to solutions. We know that bacteria and fungi are deeply involved in nutrient cycles. Recently the emergence of massive parallel sequencing has enabled us to realize that microbial diversity is huger than we expected. With such a tool it should be possible to study how soil management practices affect the microbial diversity of agricultural soils. A few such studies have been conducted, most of them focusing on bacteria. For Belgium in particular, there is a lack of data on this topic. Here the aim was to see how residue management and tillage practices affect communities of both bacteria and fungi in Belgian agricultural soils. For this we used 454 pyrosequencing of 16S bacterial and 28S fungal rRNA genes. Soil samples came from an experiment in which faba beans were grown with four soil management practices (tillage and no tillage, with and without crop residues), each repeated four times in a Latin square. Several chemical and physical characteristics were measured on each sample. The results show that fungi and bacteria are both impacted by Tillage practices. The main soil drivers are Magnesium and Phosphorus for Fungi communities, and Phosphorus and Potassium for bacteria communities. Finally, the fungi variance observed between plots is explained at 38% by Tillage, Magnesium and phosphorus. And the bacteria variance is explained at 28% by Tillage, Phosphorus and Potassium. [less ▲]

Detailed reference viewed: 62 (12 ULg)
Full Text
Peer Reviewed
See detailStudy of bacterial diversity in the topsoil and below the hardpan in an agricultural soil by metagenomics following by two analysis pipelines
Stroobants, Aurore ULg; Lambert, Christrophe; Degrune, Florine ULg et al

Poster (2013, June 10)

On earth, Bacteria are ubiquitous and even present in extreme environments (pH, temperature,…). In soils in particular, bacteria are very abundant (up to 109 cells per gram of soil) but still poorly ... [more ▼]

On earth, Bacteria are ubiquitous and even present in extreme environments (pH, temperature,…). In soils in particular, bacteria are very abundant (up to 109 cells per gram of soil) but still poorly characterized. Thus, it is of paramount importance to use relevant study and analysis procedures to ensure that the results obtained closely reflect the real-life conditions. In the present work, we analyze the bacterial diversity in the topsoil and below the hardpan in an agricultural soil using the metagenomics approach, with the Ion Torrent PGM sequencer. The soil samples was collected at three depths : 10 cm (topsoil), 25 cm (topsoil above the hardpan) and 45 cm (below the hardpan), in a tilled and a no tilled plot. The taxonomic analysis of the reads obtained are carried out according to two different procedures with the RDP classifier program and with a confidence score threshold of 0 and 0.99. The 0 threshold is used to assign a species to all reads, each read being therefore assigned to its most closest known species. The threshold of 0.99 enables us to focus on reads being assigned to a species with a high degree of confidence. In this case, each read is assigned to the most specific rank having a confidence score higher than 0.99. The bacterial diversity was then compared between the different conditions. Results obtained demonstrate that the bacterial communities were not the same in the two horizons. For example, some classes of Acidobacteria were up to 11 fold more numerous in topsoil while others was until 12 fold more represented below the hardpan. The biomass and the bacterial diversity (Shannon index) were also greatly different between the two depths. [less ▲]

Detailed reference viewed: 134 (9 ULg)
Full Text
Peer Reviewed
See detailImpact of the depth on bacterial diversity in an agricultural soil
Stroobants, Aurore ULg; Degrune, Florine ULg; Lambert, Christophe et al

Poster (2013, February 08)

Bacteria are the most abundant and diverse microorganisms in soils. They play an important role in soil formation, contribute to plant nutrition and are involved in various processes in agroecosystems ... [more ▼]

Bacteria are the most abundant and diverse microorganisms in soils. They play an important role in soil formation, contribute to plant nutrition and are involved in various processes in agroecosystems such as nutrient cycling. The aim of this study was to evaluate the impact of the depth on bacterial diversity and quantity in an agricultural soil. Samples was collected on May 2011 and May 2012 at three different depths : 10, 25 and 45 centimeters. The quantity of total bacteria was measured by real time PCR and the analysis of the diversity was performed by the high throughput sequencing technology. Results obtained by these methods show that the biomass and the bacterial quantity and diversity (Shannon index) decrease with the depth, particularly at 45 centimeters. The biomass is, in average, 6.5 fold less important at 45 cm than at 10 cm and the quantity is 17 fold lower at 45 cm than at 10 cm. Our results also indicate that many taxa, such as Betaprotebacteria, Deltaproterobacteria, Gammaproteobacteria, Acidobacteria and Burkholderiales are influenced by the depth. The results will be presented in more details on the poster. [less ▲]

Detailed reference viewed: 95 (24 ULg)