References of "Defrère, Denis"
     in
Bookmark and Share    
Full Text
See detailThe VORTEX project: first results and perspectives
Absil, Olivier ULg; Mawet, Dimitri; Delacroix, Christian ULg et al

in Marchetti, Enrico; Close, Laird; Véran, Jean-Pierre (Eds.) Adaptive Optics Systems IV (2014, July 21)

Vortex coronagraphs are among the most promising solutions to perform high contrast imaging at small angular separations from bright stars. They feature a very small inner working angle (down to the ... [more ▼]

Vortex coronagraphs are among the most promising solutions to perform high contrast imaging at small angular separations from bright stars. They feature a very small inner working angle (down to the diffraction limit of the telescope), a clear 360 degree discovery space, have demonstrated very high contrast capabilities, are easy to implement on high-contrast imaging instruments, and have already been extensively tested on the sky. Since 2005, we have been designing, developing and testing an implementation of the charge-2 vector vortex phase mask based on concentric sub-wavelength gratings, referred to as the Annular Groove Phase Mask (AGPM). Science-grade mid-infrared AGPMs were produced in 2012 for the first time, using plasma etching on synthetic diamond substrates. They have been validated on a coronagraphic test bench, showing broadband peak rejection up to 500:1 in the L band, which translates into a raw contrast of about 6e-5 at 2λ/D. Three of them have now been installed on world-leading diffraction-limited infrared cameras, namely VLT/NACO, VLT/VISIR and LBT/LMIRCam. During the science verification observations with our L-band AGPM on NACO, we observed the beta Pictoris system and obtained unprecedented sensitivity limits to planetary companions down to the diffraction limit (0.1"). More recently, we obtained new images of the HR 8799 system at L band during the AGPM first light on LMIRCam. After reviewing these first results obtained with mid-infrared AGPMs, we will discuss the short- and mid-term goals of the on-going VORTEX project, which aims to improve the performance of our vortex phase masks for future applications on second-generation high-contrast imager and on future extremely large telescopes (ELTs). In particular, we will briefly describe our current efforts to improve the manufacturing of mid-infrared AGPMs, to push their operation to shorter wavelengths, and to provide deeper starlight extinction by creating new designs for higher topological charge vortices. Within the VORTEX project, we also plan to develop new image processing techniques tailored to coronagraphic images, and to study some pre- and post-coronagraphic concepts adapted to the vortex coronagraph in order to reduce scattered starlight in the final images. [less ▲]

Detailed reference viewed: 30 (10 ULg)
Full Text
See detailmaking the most of the LBTI nulling interferometry observations using a statistical data reduction method
Marion, Lindsay ULg; Mennesson, Bertrand; Defrère, Denis et al

Poster (2014, March 20)

Detailed reference viewed: 20 (1 ULg)
Full Text
Peer Reviewed
See detailA near-infrared interferometric survey of debris disc stars. III. First statistics based on 42 stars observed with CHARA/FLUOR
Absil, Olivier ULg; Defrère, Denis; Coudé du Foresto, Vincent et al

in Astronomy and Astrophysics (2013), 555

Context. Dust is expected to be ubiquitous in extrasolar planetary systems due to the dynamical activity of minor bodies. Inner dust populations are, however, still poorly known due to the high contrast ... [more ▼]

Context. Dust is expected to be ubiquitous in extrasolar planetary systems due to the dynamical activity of minor bodies. Inner dust populations are, however, still poorly known due to the high contrast and small angular separation with respect to their host star. Yet, a proper characterisation of exozodiacal dust is mandatory for the design of future Earth-like planet imaging missions. Aims. We aim to determine the level of near-infrared exozodiacal dust emission around a sample of 42 nearby main sequence stars with spectral types ranging from A to K, and to investigate its correlation with various stellar parameters and with the presence of cold dust belts. Methods. We use high-precision K-band visibilities obtained with the FLUOR interferometer on the shortest baseline of the CHARA array. The calibrated visibilities are compared with the expected visibility of the stellar photosphere to assess the presence of an additional, fully resolved circumstellar emission source. Results. Near-infrared circumstellar emission amounting to about 1% of the stellar flux is detected around 13 of our 42 target stars. Follow-up observations showed that one of them (eps Cep) is associated with a stellar companion, while another one was detected around what turned out to be a giant star (kap CrB). The remaining 11 excesses found around single main sequence stars are most probably due to the presence of hot circumstellar dust, yielding an overall occurrence rate of 28+8-6% for our (biased) sample. We show that the occurrence rate of bright exozodiacal discs correlates with spectral type, K-band excesses being more frequent around A-type stars. It also correlates with the presence of detectable far-infrared excess emission in the case of solar-type stars. Conclusions. This study provides new insights regarding the phenomenon of bright exozodiacal disc, showing that hot dust populations are probably linked to outer dust reservoirs in the case of solar-type stars. In the case of A-type stars, no clear conclusion can be made regarding the origin of the detected near-infrared excesses. [less ▲]

Detailed reference viewed: 52 (13 ULg)
Full Text
See detailUnraveling the mystery of exozodiacal dust
Ertel, Steve; Augereau, Jean-Charles; Thebault, Philippe et al

in Protostars and Planets VI (2013, July 01)

Exozodiacal dust clouds are thought to be the extrasolar analogs of the Solar System's zodiacal dust. Studying these systems provides insights in the architecture of the innermost regions of planetary ... [more ▼]

Exozodiacal dust clouds are thought to be the extrasolar analogs of the Solar System's zodiacal dust. Studying these systems provides insights in the architecture of the innermost regions of planetary systems, including the habitable zone. Furthermore, the mere presence of the dust may result in major obstacles for direct imaging of earth-like planets. Our EXOZODI project aims to detect and study exozodiacal dust and to explain its origin. We are carrying out the first large, near-infrared interferometric survey in the northern (CHARA/FLUOR) and southern (VLTI/PIONIER) hemisphere. Preliminary results suggest a detection rate of up to 30% around A to K type stars and interesting trends with spectral type and age. In addition to the statistical analysis of our survey results, detailed modeling studies of single systems, modeling of possible dust creation mechanisms and the development of next-generation modeling tools dedicated to address the mystery of exozodiacal dust are main tasks of our project. [less ▲]

Detailed reference viewed: 6 (0 ULg)
Full Text
See detailThe planar optics phase sensor: a study for the VLTI 2nd generation fringe tracker
Blind, Nicolas; Le Bouquin, Jean-Baptiste; Absil, Olivier ULg et al

in Danchi, W. C.; Delplancke, F.; Rajagopal, J. K. (Eds.) Optical and Infrared Interferometry II (2010, July)

In a few years, the second generation instruments of the Very Large Telescope Interferometer (VLTI) will routinely provide observations with 4 to 6 telescopes simultaneously. To reach their ultimate ... [more ▼]

In a few years, the second generation instruments of the Very Large Telescope Interferometer (VLTI) will routinely provide observations with 4 to 6 telescopes simultaneously. To reach their ultimate performance, they will need a fringe sensor capable to measure in real time the randomly varying optical paths differences. A collaboration between LAOG (PI institute), IAGL, OCA and GIPSA-Lab has proposed the Planar Optics Phase Sensor concept to ESO for the 2[SUP]nd[/SUP] Generation Fringe Tracker. This concept is based on the integrated optics technologies, enabling the conception of extremely compact interferometric instruments naturally providing single-mode spatial filtering. It allows operations with 4 and 6 telescopes by measuring the fringes position thanks to a spectrally dispersed ABCD method. We present here the main analysis which led to the current concept as well as the expected on-sky performance and the proposed design. [less ▲]

Detailed reference viewed: 41 (12 ULg)
See detailPotential of balloon payloads for in flight validation of direct and nulling interferometry concepts
Demangeon, Olivier; Ollivier, Marc; Le Duigou, Jean-Michel et al

in Danchi, W. C.; Delplancke, F.; Rajagopal, J. K. (Eds.) Optical and Infrared Interferometry II (2010, July)

While the question of low cost / low science precursors is raised to validate the concepts of direct and nulling interferometry space missions, balloon payloads offer a real opportunity thanks to their ... [more ▼]

While the question of low cost / low science precursors is raised to validate the concepts of direct and nulling interferometry space missions, balloon payloads offer a real opportunity thanks to their relatively low cost and reduced development plan. Taking into account the flight capabilities of various balloon types, we propose in this paper, several concepts of payloads associated to their flight plan. We also discuss the pros and cons of each concepts in terms of technological and science demonstration power. [less ▲]

Detailed reference viewed: 13 (2 ULg)
Full Text
Peer Reviewed
See detailThe Search for Worlds Like Our Own
Fridlund, Malcolm; Eiroa, Carlos; Henning, Thomas et al

in Astrobiology (2010), 10(1), 5-17

The direct detection of Earth-like exoplanets orbiting nearby stars and the characterization of such planets -- particularly, their evolution, their atmospheres, and their ability to host life ... [more ▼]

The direct detection of Earth-like exoplanets orbiting nearby stars and the characterization of such planets -- particularly, their evolution, their atmospheres, and their ability to host life -- constitute a significant problem. The quest for other worlds as abodes of life has been one of mankind's great questions for several millennia. For instance, as stated by Epicurus 300 BC: Other worlds, with plants and other living things, some of them similar and some of them different from ours, must exist. Demokritos from Abdera (460-370 BC), the man who invented the concept of indivisible small parts - atoms - also held the belief that other worlds exist around the stars and that some of these worlds may be inhabited by life-forms. The idea of the plurality of worlds and of life on them has since been held by scientists like Johannes Kepler and William Herschel, among many others. Here, one must also mention Giordano Bruno. Born in 1548, Bruno studied in France and came into contact with the teachings of Nicolas Copernicus. He wrote the book De l'Infinito, Universo e Mondi in 1584, in which he claimed that the Universe was infinite, that it contained an infinite amount of worlds like Earth, and that these worlds were inhabited by intelligent beings. At the time, this was extremely controversial, and eventually Bruno was arrested by the church and burned at the stake in Rome in 1600, as a heretic, for promoting this and other equally confrontational issues (though it is unclear exactly which idea was the one that ultimately brought him to his end). In all the aforementioned cases, the opinions and results were arrived at through reasoning--not by experiment. We have only recently acquired the technological capability to observe planets orbiting stars other than 6our Sun; acquisition of this capability has been a remarkable feat of our time. We show in this introduction to the Habitability Primer that mankind is at the dawning of an age when, by way of the scientific method and 21st-century technology, we will be able to answer this fascinating controversial issue that has persisted for at least 2500 years. [less ▲]

Detailed reference viewed: 24 (6 ULg)
Full Text
Peer Reviewed
See detailA near-infrared interferometric survey of debris disc stars. II. CHARA/FLUOR observations of six early-type dwarfs
Absil, Olivier ULg; di Folco, E.; Mérand, A. et al

in Astronomy and Astrophysics (2008), 487

Aims. We aim at directly detecting the presence of optically thin circumstellar dust emission within the terrestrial planetary zone around main sequence stars known to harbour cold debris discs. The ... [more ▼]

Aims. We aim at directly detecting the presence of optically thin circumstellar dust emission within the terrestrial planetary zone around main sequence stars known to harbour cold debris discs. The present study focuses on a sample of six bright A- and early F-type stars. Methods: High-precision interferometric observations have been obtained in the near-infrared K band with the FLUOR instrument installed on the CHARA Array. The measured squared visibilities are compared to the expected visibility of the stellar photospheres based on theoretical photospheric models taking into account rotational distortion. We search for potential visibility reduction at short baselines, a direct piece of evidence for resolved circumstellar emission. Results: Our observations bring to light the presence of resolved circumstellar emission around one of the six target stars (zeta Aql) at the 5sigma level. The morphology of the emission source cannot be directly constrained because of the sparse spatial frequency sampling of our interferometric data. Using complementary adaptive optics observations and radial velocity measurements, we find that the presence of a low-mass companion is a likely origin for the excess emission. The potential companion is characterised by a K-band contrast of four magnitudes. It has a most probable mass of about 0.6~Msun and is expected to orbit between about 5.5 AU and 8 AU from its host star assuming a purely circular orbit. Nevertheless, by adjusting a physical debris disc model to the observed Spectral Energy Distribution of the zeta Aql system, we also show that the presence of hot dust within 10 AU from zeta Aql, producing a total thermal emission equal to 1.69 ± 0.31% of the photospheric flux in the K band, is another viable explanation for the observed near-infrared excess. Our re-interpretation of archival near- to far-infrared photometric measurements shows however that cold dust is not present around zeta Aql at the sensitivity limit of the IRS and MIPS instruments onboard Spitzer, and urges us to remove zeta Aql from the category of bona fide debris disc stars. Conclusions: The hot debris disc around Vega (Absil et al. 2006) currently remains our only secure resolved detection within the context of this survey, with six genuine early-type debris disc stars observed so far. Further observations will be needed to assess whether zeta Aql also belongs to this hot debris disc category. Partly based on observations collected at the European Southern Observatory, La Silla, Chile, under program IDs 073.C-0733, 077.C-0295 and 080.C-0712. [less ▲]

Detailed reference viewed: 29 (4 ULg)
Full Text
See detailHigh dynamic range interferometric observations of exozodiacal discs: performance comparison between ground, space, and Antarctica
Absil, Olivier ULg; Defrere, Denis; Coudé du Foresto, Vincent et al

in Schöller, Markus; Danchi, William; Delplancke, Françoise (Eds.) Optical and Infrared Interferometry (2008, July 01)

The possible presence of large amounts of exozodiacal dust around nearby main sequence stars represents a threat to the detection and characterisation of Earth-like extrasolar planets with future infrared ... [more ▼]

The possible presence of large amounts of exozodiacal dust around nearby main sequence stars represents a threat to the detection and characterisation of Earth-like extrasolar planets with future infrared space interferometers such as DARWIN or TPF. In this paper, we first review the current detection capabilities of ground-based infrared interferometers such as CHARA/FLUOR and the detections of hot dust that have been obtained so far around a few main sequence stars. With the help of realistic instrumental simulations, we then discuss the relative merits of various ground-based sites (temperate and Antarctic) versus space-based observatories for the detection of exozodiacal discs down to a few zodi by interferometric nulling as a preparation to future life-finding missions. In particular, we discuss the performance of four proposed nulling interferometers: GENIE, ALADDIN, PEGASE and FKSI. An optimised strategy for the characterisation of candidate DARWIN/TPF targets is finally proposed. [less ▲]

Detailed reference viewed: 10 (0 ULg)