References of "Defrère, D"
     in
Bookmark and Share    
Full Text
See detailThe Hunt for Observable Signatures of Terrestrial Planetary Systems (HOSTS)
Defrere, D.; Hinz, P.; Bryden, G. et al

Conference (2014, March)

The presence of large amounts of exozodiacal dust around nearby main sequence stars is considered as a potential threat for the direct imaging of Earth-like exoplanets and, hence, the search for ... [more ▼]

The presence of large amounts of exozodiacal dust around nearby main sequence stars is considered as a potential threat for the direct imaging of Earth-like exoplanets and, hence, the search for biosignatures (Roberge et al. 2012). However, it is also considered as a signpost for the presence of terrestrial planets that might be hidden in the dust disk (Stark and Kuchner 2008). Characterizing exozodiacal dust around nearby sequence stars is therefore a crucial step toward one of the main goals of modern astronomy: finding extraterrestrial life. After briefly reviewing the latest results in this field, we present the exozodiacal dust survey on the Large Binocular Telescope Interferometer (LBTI). The survey is called HOSTS and is specifically designed to determine the prevalence and brightness of exozodiacal dust disks with the sensitivity required to prepare for future New Worlds Missions that will image Earth-like exoplanets. To achieve this objective, the LBTI science team has carefully established a balanced list of 50 nearby main-sequence stars that are likely candidates of these missions and/or can be observed with the best instrument performance (see companion abstract by Roberge et al.). Exozodiacal dust disk candidates detected by the Keck Interferometer Nuller will also be observed. The first results of the survey will be presented. To precisely detect exozodiacal dust, the LBTI combines the two 8-m primary mirrors of the LBT using N-band nulling interferometry. Interferometric combination provides the required angular resolution (70-90 mas) to resolve the habitable zone of nearby main sequence stars while nulling is used to subtract the stellar light and reach the required contrast of a few 10-4. A Kband fringe tracker ensures the stability of the null. The current performance of the instrument and the first nulling measurements will be presented. [less ▲]

Detailed reference viewed: 7 (0 ULg)
Full Text
See detailUnraveling the Mystery of Exozodiacal Dust
Ertel, S.; Augereau, J.-C.; Thébault, P. et al

in Booth, Mark; Matthews, Brenda; Graham, James (Eds.) Exploring the Formation and Evolution of Planetary Systems (2014, January 01)

Exozodiacal dust clouds are thought to be the extrasolar analogs of the Solar System's zodiacal dust. Studying these systems provides insights in the architecture of the innermost regions of planetary ... [more ▼]

Exozodiacal dust clouds are thought to be the extrasolar analogs of the Solar System's zodiacal dust. Studying these systems provides insights in the architecture of the innermost regions of planetary systems, including the Habitable Zone. Furthermore, the mere presence of the dust may result in major obstacles for direct imaging of earth-like planets. Our EXOZODI project aims to detect and study exozodiacal dust and to explain its origin. We are carrying out the first large, near-infrared interferometric survey in the northern (CHARA/FLUOR) and southern (VLTI/PIONIER) hemispheres. Preliminary results suggest a detection rate of up to 30% around A to K type stars and interesting trends with spectral type and age. We focus here on presenting the observational work carried out by our team. [less ▲]

Detailed reference viewed: 11 (0 ULg)
Full Text
Peer Reviewed
See detailAn interferometric study of the Fomalhaut inner debris disk. III. Detailed models of the exozodiacal disk and its origin
Lebreton, J; van Lieshout, R; Augereau, J-C et al

in Astronomy and Astrophysics (2013), 555

Context. Debris disks are thought to be extrasolar analogues to the Solar System planetesimal belts. The star Fomalhaut harbors a cold debris belt at 140AU comparable to the Edgeworth-Kuiper belt, as well ... [more ▼]

Context. Debris disks are thought to be extrasolar analogues to the Solar System planetesimal belts. The star Fomalhaut harbors a cold debris belt at 140AU comparable to the Edgeworth-Kuiper belt, as well as evidence for a warm dust component, unresolved by single-dish telescopes, that is suspected to be a bright analogue to the Solar System's zodiacal dust. Aims. Interferometric observations obtained with the VLTI/VINCI instrument and the Keck Interferometer Nuller have identi fied near- and mid-infrared excesses attributed respectively to hot and warm exozodiacal dust residing in the inner few AU of the Fomalhaut environment. We aim to characterize the properties of this double inner dust belt and to unveil its origin. Methods.We perform parametric modelling of the exozodiacal disk ("exozodi") using the GRaTer radiative transfer code in order to reproduce the interferometric data, complemented by mid- to far-infrared photometric measurements from Spitzer and Herschel. A detailed treatment of sublimation temperatures is introduced to explore the hot population at the size-dependent sublimation rim. We then use an analytical approach to test successively several source mechanisms for the dust and suspected parent bodies. Results. A good fi t to the multi-wavelength data is found by two distinct dust populations: (1) a population of very small (0.01 to 0.5 µ m) and therefore unbound, hot dust grains con ned in a narrow region ( ~0.1 - 0.3 AU) at the sublimation rim of carbonaceous material; (2) a population of bound grains at 2AU that is protected from sublimation and has a larger mass despite its fainter flux level. We propose that the hot dust is produced by the release of small carbon grains following the disruption of dust aggregates that originate from the warm component. A mechanism such as gas braking is required to further con ne the small grains for long enough. In situ dust production could hardly be ensured for the age of the star and we conclude that the observed amount of dust is triggered by intense dynamical activity. Conclusions. Fomalhaut may be representative of exozodis that are currently being surveyed at near and mid-infrared wavelengths worldwide. We propose a framework for reconciling the "hot exozodi phenomenon" with theoretical constraints: the hot component of Fomalhaut is likely the "tip of the iceberg" as it could derive from the more massive, but fainter, warm dust component residing near the ice line. This inner disk exhibits interesting morphology and can be considered a prime target for future exoplanet research. [less ▲]

Detailed reference viewed: 23 (2 ULg)
Full Text
Peer Reviewed
See detailParasitic interference in nulling interferometry
Matter, A.; Defrère, D.; Danchi, W. C. et al

in Monthly Notices of the Royal Astronomical Society (2013), 431(2), 1286-1295

Nulling interferometry aims to detect faint objects close to bright stars. Its principle is to produce a destructive interference along the line of sight so that the stellar flux is rejected, while the ... [more ▼]

Nulling interferometry aims to detect faint objects close to bright stars. Its principle is to produce a destructive interference along the line of sight so that the stellar flux is rejected, while the flux of the off-axis source can be transmitted. In practice, various instrumental perturbations can degrade the nulling performance. Any imperfection in phase, amplitude or polarization produces a spurious flux that leaks to the interferometer output and corrupts the transmitted off-axis flux. One of these instrumental perturbations is the crosstalk phenomenon, which occurs because of multiple parasitic reflections inside transmitting optics, and/or diffraction effects related to beam propagation along finite size optics. It can include a crosstalk of a beam with itself, and a mutual crosstalk between different beams. This can create a parasitic interference pattern, which degrades the intrinsic transmission map - or intensity response - of the interferometer. In this context, we describe how this instrumental effect impairs the performance of a Bracewell interferometer. A simple formalism is developed to derive the corresponding modified intensity response of the interferometer, as a function of the two parameters of interest: the crosstalk level (or contamination rate) and the phase shift between the primary and secondary - parasitic - beams. We then apply our mathematical approach to a few scientific cases, both analytically and using the GENIESIM simulation software, adapted to handle coherent crosstalk. Our results show that a coherent crosstalk level of about 1 per cent implies a 20 per cent drop of the signal-to-noise ratio at most. Careful attention should thus be paid to reduce the crosstalk level inside an interferometric instrument and ensure an instrumental stability that provides the necessary sensitivity through calibration procedures. [less ▲]

Detailed reference viewed: 16 (2 ULg)
Full Text
Peer Reviewed
See detailHot circumstellar material resolved around β Pic with VLTI/PIONIER
Defrère, D.; Lebreton, J.; Le Bouquin, J.-B. et al

in Astronomy and Astrophysics (2012), 546

Aims: We aim at resolving the circumstellar environment around β Pic in the near-infrared in order to study the inner planetary system (<200 mas, i.e., ~4 AU). Methods: Precise interferometric fringe ... [more ▼]

Aims: We aim at resolving the circumstellar environment around β Pic in the near-infrared in order to study the inner planetary system (<200 mas, i.e., ~4 AU). Methods: Precise interferometric fringe visibility measurements were obtained over seven spectral channels dispersed across the H band with the four-telescope VLTI/PIONIER interferometer. Thorough analysis of interferometric data was performed to measure the stellar angular diameter and to search for circumstellar material. Results: We detected near-infrared circumstellar emission around β Pic that accounts for 1.37% ± 0.16% of the near-infrared stellar flux and that is located within the field-of-view of PIONIER (i.e., ~200 mas in radius). The flux ratio between this excess and the photosphere emission is shown to be stable over a period of 1 year and to vary only weakly across the H band, suggesting that the source is either very hot (≳1500 K) or dominated by the scattering of the stellar flux. In addition, we derive the limb-darkened angular diameter of β Pic with an unprecedented accuracy (θLD= 0.736 ± 0.019 mas). Conclusions: The presence of a small H-band excess originating in the vicinity of β Pic is revealed for the first time thanks to the high-precision visibilities enabled by VLTI/PIONIER. This excess emission is likely due to the scattering of stellar light by circumstellar dust and/or the thermal emission from a yet unknown population of hot dust, although hot gas emitting in the continuum cannot be firmly excluded. [less ▲]

Detailed reference viewed: 12 (2 ULg)
Full Text
See detailImaging the inner regions of debris disks with near-infrared interferometry
Defrère, D.; Absil, Olivier ULg; Augereau, J. C. et al

in EPSC-DPS Joint Meeting 2011 (2011, October 01)

Most debris disks resolved so far show extended structures located at tens to hundreds AU from the host star, and are more analogous to our solar system's dusty Kuiper belt than to the AU-scale zodiacal ... [more ▼]

Most debris disks resolved so far show extended structures located at tens to hundreds AU from the host star, and are more analogous to our solar system's dusty Kuiper belt than to the AU-scale zodiacal disk inside our solar system's asteroid belt. Over the last few years however, a few hot debris disks have been detected around a handful of main sequence stars thanks to the advance of infrared interferometry. The grain populations derived from these observations are quite intriguing, as they point towards very high dust replenishment rates, high cometary activity or major collisional events. In this talk, we review the ongoing efforts to detect bright exozodiacal disks with precision near-infrared interferometry in both hemispheres with CHARA/FLUOR and VLTI/PIONIER. We discuss preliminary statistical trends on the occurrence of bright exozodi around nearby main sequence stars and show how this information could be used to constrain the global architecture and evolution of debris disks. [less ▲]

Detailed reference viewed: 15 (0 ULg)
Full Text
Peer Reviewed
See detailHot exozodiacal dust resolved around Vega with IOTA/IONIC
Defrère, D.; Absil, Olivier ULg; Augereau, J.-C. et al

in Astronomy and Astrophysics (2011), 534

Context. Although debris discs have been detected around a significant number of main-sequence stars, only a few of them are known to harbour hot dust in their inner part where terrestrial planets may ... [more ▼]

Context. Although debris discs have been detected around a significant number of main-sequence stars, only a few of them are known to harbour hot dust in their inner part where terrestrial planets may have formed. Thanks to infrared interferometric observations, it is possible to obtain a direct measurement of these regions, which are of prime importance for preparing future exo-Earth characterisation missions. <BR /> Aims: We resolve the exozodiacal dust disc around Vega with the help of infrared stellar interferometry and estimate the integrated H-band flux originating from the first few AUs of the debris disc. <BR /> Methods: Precise H-band interferometric measurements were obtained on Vega with the 3-telescope IOTA/IONIC interferometer (Mount Hopkins, Arizona). Thorough modelling of both interferometric data (squared visibility and closure phase) and spectral energy distribution was performed to constrain the nature of the near-infrared excess emission. <BR /> Results: Resolved circumstellar emission within ~6 AU from Vega is identified at the 3-σ level. The most straightforward scenario consists in a compact dust disc producing a thermal emission that is largely dominated by small grains located between 0.1 and 0.3 AU from Vega and accounting for 1.23 ± 0.45% of the near-infrared stellar flux for our best-fit model. This flux ratio is shown to vary slightly with the geometry of the model used to fit our interferometric data (variations within ± 0.19%). <BR /> Conclusions: The presence of hot exozodiacal dust in the vicinity of Vega, initially revealed by K-band CHARA/FLUOR observations, is confirmed by our H-band IOTA/IONIC measurements. Whereas the origin of the dust is still uncertain, its presence and the possible connection with the outer disc suggest that the Vega system is currently undergoing major dynamical perturbations. [less ▲]

Detailed reference viewed: 18 (0 ULg)
See detailStudying debris disks with near‐infrared interferometry
Absil, Olivier ULg; Augereau, J.-C.; Le Bouquin, J.-B. et al

Conference (2011, April 13)

In this talk, I will describe and illustrate two different ways in which near-infrared stellar interferometry can be used to constrain the nature and physics of debris disks, and help understand the ... [more ▼]

In this talk, I will describe and illustrate two different ways in which near-infrared stellar interferometry can be used to constrain the nature and physics of debris disks, and help understand the global architecture of planetary systems in general. In the first part of the talk, I will review the on-going efforts to detect bright exozodiacal disks with precision near-infrared interferometry. I will describe the results of the exozodi survey that we are currently carrying out at the CHARA array, and briefly discuss our first results and perspectives with the new PIONIER instrument at the VLTI (including the identification of previously unknown low-mass companions). Preliminary statistical trends on the occurrence of bright exozodi around nearby main sequence stars will be presented, and I will discuss how this information could be used to constrain the global architecture and evolution of debris disks. In the second part of the talk, I will focus on our on-going project to characterize the “spin-orbit” alignment of resolved debris disks with the rotation axis of their (rapidly rotating) host star. Our first result obtained with the VLTI/AMBER spectro-interferometer on Fomalhaut will be presented, as well as its possible consequences on the dynamics of the planetary system and on the physics of the grains composing the Fomalhaut dust ring. I will then briefly describe the status and perspectives of this project. [less ▲]

Detailed reference viewed: 12 (0 ULg)
See detailInfluence of Exozodiacal Dust Clouds on Mid-IR Earth-like Planet Detection
Defrère, D.; Absil, Olivier ULg; den Hartog, R. et al

in Coudé du Foresto, Vincent; Gelino, Dawn; Ribas, Ignasi (Eds.) Pathways Towards Habitable Planets (2010, October 01)

The characterization of Earth-like extrasolar planets in the mid-infrared is a significant observational challenge that could be tackled by future space-based interferometers. A large effort has been ... [more ▼]

The characterization of Earth-like extrasolar planets in the mid-infrared is a significant observational challenge that could be tackled by future space-based interferometers. A large effort has been carried out the past two decades to define a design that provides the necessary scientific performance while minimizing cost and technical risks. These efforts have resulted in a consensus on a single mission architecture consisting of a non-coplanar X-array (the so-called Emma configuration), using four collector spacecraft and a single beam combiner spacecraft. The ability to study distant planets with an X-array interferometer will however depend on exozodiacal dust clouds, the counterparts of the solar zodiacal disk. In this paper, we briefly discuss the impact of exozodiacal clouds on the performance of an Emma X-array interferometer dedicated to Earth-like planet characterization. [less ▲]

Detailed reference viewed: 10 (0 ULg)
See detailThe Fourier-Kelvin Stellar Interferometer: Exploring Exoplanetary Systems with an Infrared Probe-class Mission
Barry, R. K.; Danchi, W. C.; Lopez, B. et al

in Coudé du Foresto, Vincent; Gelino, Dawn; Ribas, Ignasi (Eds.) Pathways Towards Habitable Planets (2010, October 01)

We report results of a recent engineering study of an enhanced version of the Fourier-Kelvin Stellar Interferometer (FKSI) that includes 1-m diameter primary mirrors, a 20-m baseline, a sun shield with a ... [more ▼]

We report results of a recent engineering study of an enhanced version of the Fourier-Kelvin Stellar Interferometer (FKSI) that includes 1-m diameter primary mirrors, a 20-m baseline, a sun shield with a ±45° Field-of-Regard (FoR), and 40K operating temperature. The enhanced FKSI is a two-element nulling interferometer operating in the mid-infrared (e.g. ˜ 5-15 μm) designed to measure exozodiacal debris disks around nearby stars with a sensitivity better than one solar system zodi (SSZ) and to characterize the atmospheres of a large sample of known exoplanets. The modifications to the original FKSI design also allows observations of the atmospheres of many super-Earths and a few Earth twins using a combination of spatial modulation and spectral analysis. [less ▲]

Detailed reference viewed: 18 (0 ULg)
Full Text
See detailDo we Need to Solve the Exozodi Question? If Yes, How to Best Solve It?
Absil, Olivier ULg; Eiroa, C.; Augereau, J. et al

in Coudé du Foresto, Vincent; Gelino, Dawn; Ribas, Ignasi (Eds.) Pathways Towards Habitable Planets (2010, October 01)

When observing an extrasolar planetary system, the most luminous component after the star itself is generally the light scattered and/or thermally emitted by a population of micron-sized dust grains ... [more ▼]

When observing an extrasolar planetary system, the most luminous component after the star itself is generally the light scattered and/or thermally emitted by a population of micron-sized dust grains. These grains are expected to be continuously replenished by the collisions and evaporation of larger bodies just as in our solar zodiacal cloud. Exozodiacal clouds (“exozodis”) must therefore be seriously taken into account when attempting to directly image faint Earth-like planets (exoEarths, for short). This paper summarizes the oral contributions and discussions that took place during the Satellite Meeting on exozodiacal dust disks, in an attempt to address the following two questions: Do we need to solve the exozodi question? If yes, how to best solve it? [less ▲]

Detailed reference viewed: 15 (0 ULg)
Full Text
See detailInfrared Detection and Characterization of Debris Disks, Exozodiacal Dust, and Exoplanets: The FKSI Mission Concept
Danchi, W. C.; Barry, R. K.; Lopez, B. et al

in Coudé du Foresto, Vincent; Gelino, Dawn; Ribas, Ignasi (Eds.) Pathways Towards Habitable Planets (2010, October 01)

The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for a nulling interferometer for the near-to-mid-infrared spectral region. FKSI is conceived as a mid-sized strategic or Probe class ... [more ▼]

The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for a nulling interferometer for the near-to-mid-infrared spectral region. FKSI is conceived as a mid-sized strategic or Probe class mission. FKSI has been endorsed by the Exoplanet Community Forum 2008 as such a mission and has been costed to be within the expected budget. The current design of FKSI is a two-element nulling interferometer. The two telescopes, separated by 12.5m, are precisely pointed (by small steering mirrors) on the target star. The two path lengths are accurately controlled to be the same to within a few nanometers. A phase shifter/beam combiner (Mach-Zehnder interferometer) produces an output beam consisting of the nulled sum of the target planet’s light and the host star’s light. When properly oriented, the starlight is nulled by a factor of 10[SUP]-4[/SUP], and the planet light is undiminished. Accurate modeling of the signal is used to subtract the residual starlight, permitting the detection of planets much fainter than the host star. The current version of FKSI with 0.5-m apertures and waveband 3-8 μm has the following main capabilities: (1) detect exozodiacal emission levels to that of our own solar system (Solar System Zodi) around nearby F, G, and K stars; (2) characterize spectroscopically the atmospheres of a large number of known non-transiting planets; (3) survey and characterize nearby stars for planets down to 2 R[SUB]earth[/SUB] from just inside the habitable zone and inward. An enhanced version of FKSI with 1-m apertures separated by 20 m and cooled to 40 K, with science waveband 5-15 μm, allows for the detection and characterization of 2 R[SUB]earth[/SUB] super-Earths and smaller planets in the habitable zone around stars within about 30 pc. [less ▲]

Detailed reference viewed: 16 (0 ULg)
Full Text
See detailDirect imaging of Earth-like planets: why we care about exozodis
Absil, Olivier ULg; Defrère, D.; Roberge, A. et al

in Danchi, W. C.; Delplancke, F.; Rajagopal, J. K. (Eds.) Optical and Infrared Interferometry II (2010, July)

The presence of large amounts of exozodiacal dust around nearby main sequence stars is considered as a potential threat for the direct detection of Earth-like exoplanets (exoEarths) with future space ... [more ▼]

The presence of large amounts of exozodiacal dust around nearby main sequence stars is considered as a potential threat for the direct detection of Earth-like exoplanets (exoEarths) with future space-based coronagraphic and interferometric missions. In this paper, we estimate the amount of exozodiacal light that can be tolerated around various stellar types without jeopardizing the detection of exoEarths with a space-based visible coronagraph or a free-flying mid-infrared interferometer. We also address the possible effects of resonant structures in exozodiacal disks. We then review the sensitivity of current ground-based interferometric instruments to exozodiacal disks, based on classical visibility measurements and on the nulling technique. We show that the current instrumental performances are not sufficient to help prepare future exoEarth imaging missions, and discuss how new groundor space-based instruments could improve the current sensitivity to exozodiacal disks down to a suitable level. [less ▲]

Detailed reference viewed: 31 (11 ULg)
Full Text
See detailTechnology for a Mid-IR Flagship Mission to Characterize Earth-like Exoplanets
Lawson, P. R.; Absil, Olivier ULg; Akeson, R. L. et al

E-print/Working paper (2009)

The exploration of Earth-like exoplanets will be enabled at mid-infrared wavelengths through technology and engineering advances in nulling interferometry and precision formation flying. Nulling ... [more ▼]

The exploration of Earth-like exoplanets will be enabled at mid-infrared wavelengths through technology and engineering advances in nulling interferometry and precision formation flying. Nulling interferometry provides the dynamic range needed for the detection of biomarkers. Formation flying provides the angular resolution required in the mid-infrared to separately distinguish the spectra of planets in multi-planet systems. The flight performance requirements for nulling have been met and must now be validated in a flight-like environment. Formation-flying algorithms have been demonstrated in the lab and must now be validated in space. Our proposed technology program is described. [less ▲]

Detailed reference viewed: 28 (3 ULg)