References of "Defise, Jean-Marc"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe SWAP EUV Imaging Telescope. Part II: In-flight Performance and Calibration
Halain, Jean-Philippe ULg; Berghmans, David; Seaton, Dan et al

in Solar Physics (2013), 286

The Sun Watcher with Active Pixel System detector and Image Processing (SWAP) telescope was launched on 2 November 2009 onboard the ESA PROBA2 technological mission and has acquired images of the solar ... [more ▼]

The Sun Watcher with Active Pixel System detector and Image Processing (SWAP) telescope was launched on 2 November 2009 onboard the ESA PROBA2 technological mission and has acquired images of the solar corona every one to two minutes for more than two years. The most important technological developments included in SWAP are a radiation-resistant CMOS-APS detector and a novel onboard data-prioritization scheme. Although such detectors have been used previously in space, they have never been used for long-term scientific observations on orbit. Thus SWAP requires a careful calibration to guarantee the science return of the instrument. Since launch we have regularly monitored the evolution of SWAP’s detector response in-flight to characterize both its performance and degradation over the course of the mission. These measurements are also used to reduce detector noise in calibrated images (by subtracting dark-current). Because accurate measurements of detector dark-current require large telescope off-points, we also monitored straylight levels in the instrument to ensure that these calibration measurements are not contaminated by residual signal from the Sun. Here we present the results of these tests and examine the variation of instrumental response and noise as a function of both time and temperature throughout the mission. [less ▲]

Detailed reference viewed: 34 (10 ULg)
Full Text
Peer Reviewed
See detailThe SWAP EUV Imaging Telescope Part I: Instrument Overview and Pre-Flight Testing
Seaton, Daniel; Berghmans, David; Nicula, Bogdan et al

in Solar Physics (2013), 286

The Sun Watcher with Active Pixels and Image Processing (SWAP) is an EUV solar telescope onboard ESA’s Project for Onboard Autonomy 2 (PROBA2) mission launched on 2 November 2009. SWAP has a spectral ... [more ▼]

The Sun Watcher with Active Pixels and Image Processing (SWAP) is an EUV solar telescope onboard ESA’s Project for Onboard Autonomy 2 (PROBA2) mission launched on 2 November 2009. SWAP has a spectral bandpass centered on 17.4 nm and provides images of the low solar corona over a 54 × 54 arcmin field-of-view with 3.2 arcsec pixels and an imaging cadence of about two minutes. SWAP is designed to monitor all space-weatherrelevant events and features in the low solar corona. Given the limited resources of the PROBA2 microsatellite, the SWAP telescope is designed with various innovative technologies, including an off-axis optical design and a CMOS–APS detector. This article provides reference documentation for users of the SWAP image data. [less ▲]

Detailed reference viewed: 19 (7 ULg)
Full Text
Peer Reviewed
See detailStraylight-Rejection Performance of the STEREO HI Instruments
Halain, Jean-Philippe ULg; Rochus, Pierre ULg; Defise, Jean-Marc ULg et al

in Solar Physics (2011)

The SECCHI Heliospheric Imager (HI) instruments on-board the STEREO spacecraft have been collecting images of solar wind transients, including coronal mass ejections, as they propagate through the inner ... [more ▼]

The SECCHI Heliospheric Imager (HI) instruments on-board the STEREO spacecraft have been collecting images of solar wind transients, including coronal mass ejections, as they propagate through the inner heliosphere since the beginning of 2007. The scientific use of the images depends critically on the performance of the instruments and its evolution over time. One of the most important factors affecting the performance of the instrument is the rejection of straylight from the Sun and from other bright objects located both within and outside the HI fields of view. This paper presents an analysis of the evolution of the straylight-rejection performance of the HI instrument on each of the two STEREO spacecraft over the three first years of the mission. The straylight level has been evaluated and expressed in mean solar brightness units, in which such scientific observations are usually quoted, using photometric conversion factors. [less ▲]

Detailed reference viewed: 39 (14 ULg)
Full Text
Peer Reviewed
See detailHandheld modern computer brings new features to portable X-ray fluorescence coating thickness measurement device
Carapelle, Alain ULg; Defise, Jean-Marc ULg; Strivay, David ULg et al

in Computer Physics Communications (2011), 182(6), 1304-1306

Detailed reference viewed: 33 (7 ULg)
Full Text
See detailIN-FLIGHT PERFORMANCE OF THE SOLAR UV RADIOMETER LYRA / PROBA-2
Stockman, Yvan ULg; Defise, Jean-Marc ULg; Halain, Jean-Philippe ULg et al

(2010, October 05)

LYRA is a solar radiometer, part of the PROBA-2 micro-satellite payload. The PROBA-2 mission has been launched on 02 November 2009 with a Rockot launcher to a Sun-synchronous orbit at an altitude of 725 ... [more ▼]

LYRA is a solar radiometer, part of the PROBA-2 micro-satellite payload. The PROBA-2 mission has been launched on 02 November 2009 with a Rockot launcher to a Sun-synchronous orbit at an altitude of 725 km. Its nominal operation duration is two years with possible extension of 2 years. LYRA monitors the solar irradiance at a high cadence (> 20Hz) in four soft X-Ray to VUV large passbands: the “Lyman-Alpha” channel, the “Herzberg” continuum range, the “Aluminium” and “Zirconium” filter channels. The radiometric calibration is traceable to synchrotron source standards. LYRA benefits from wide bandgap detectors based on diamond. It is the first space assessment of these revolutionary UV detectors for astrophysics. [less ▲]

Detailed reference viewed: 31 (2 ULg)
Full Text
See detailDevelopment of digital holography in the long wave infrared range for assessment of space reflectors
Thizy, Cédric ULg; Vandenrijt, Jean-François ULg; Georges, Marc ULg et al

in Proceedings of ICSO 2010 - International Conference on Space Optics (2010, October)

Detailed reference viewed: 41 (10 ULg)
Full Text
See detailContinuous Solar Simulator for Concentrator Photovoltaic Systems
Thibert, Tanguy ULg; Hellin, Marie-Laure ULg; Loicq, Jerôme ULg et al

in Proceedings of the 25th European Photovoltaic Solar Energy Conference (2010, September)

A continuous solar simulator for measuring performance of concentrator photovoltaic (CPV) systems is presented. The illumination system is based on a Xenon lamp, a homogenizer rod, shaping optics and a ... [more ▼]

A continuous solar simulator for measuring performance of concentrator photovoltaic (CPV) systems is presented. The illumination system is based on a Xenon lamp, a homogenizer rod, shaping optics and a 30cm diameter collimator. The design optimises the reproduction of the characteristics of direct solar illumination: 32’ divergence, high spatial homogeneity, sun-like spectral distribution, with a maximum intensity of 250W/m². It accommodates pass-band and attenuation filters to tune the beam output. It operates in continuous mode, allowing to investigate CPV thermal aspects as well. The present paper addresses the concept design of the solar simulator and associated performance results. [less ▲]

Detailed reference viewed: 79 (14 ULg)
Full Text
See detailFirst steps in the development of a piston sensor for large aperture space telescopes
Guerri, Géraldine ULg; Roose, Stéphane ULg; Stockman, Yvan ULg et al

in Oschmann, J.; Clampin, M.; MacEwen, H. (Eds.) Space Telescopes and Instrumentation 2010: Optical, Infrared, and Millimeter Wave (2010, July 01)

Nowadays spaceborne missions for astronomy or Earth imaging need high resolution observation which implies the development of large aperture telescopes. This can be achieved by multi-aperture telescopes ... [more ▼]

Nowadays spaceborne missions for astronomy or Earth imaging need high resolution observation which implies the development of large aperture telescopes. This can be achieved by multi-aperture telescopes or large segmented telescopes. One of the major issues is the phasing of the sub-apertures or the segments of such telescopes. A cophasing sensor is therefore mandatory to achieve the ultimate resolution of these telescopes. In this framework, Liège Space Center (CSL) concern is the development of a compact cophasing sensor to phase new large lightweight segmented mirrors for future space telescopes. The sensor concept has its origins in new phase retrieval algorithms which have been recently developed. In this paper, we outline the concept and the experimental validation results of our piston sensor breadboard which is currently under development in our laboratory. Finally, future prospects and further developments of our experiment are presented. [less ▲]

Detailed reference viewed: 54 (18 ULg)
Full Text
See detailThe technical challenges of the Solar-Orbiter EUI instrument
Halain, Jean-Philippe ULg; Rochus, Pierre ULg; Renotte, Etienne ULg et al

in Proceedings - Society of Photo-Optical Instrumentation Engineers (2010), 7732(26),

The Extreme Ultraviolet Imager (EUI) onboard Solar Orbiter consists of a suite of two high-resolution imagers (HRI) and one dual-band full Sun imager (FSI) that will provide EUV and Lyman-α images of the ... [more ▼]

The Extreme Ultraviolet Imager (EUI) onboard Solar Orbiter consists of a suite of two high-resolution imagers (HRI) and one dual-band full Sun imager (FSI) that will provide EUV and Lyman-α images of the solar atmospheric layers above the photosphere. The EUI instrument is based on a set of challenging new technologies allowing to reach the scientific objectives and to cope with the hard space environment of the Solar Orbiter mission. The mechanical concept of the EUI instrument is based on a common structure supporting the HRI and FSI channels, and a separated electronic box. A heat rejection baffle system is used to reduce the Sun heat load and provide a first protection level against the solar disk straylight. The spectral bands are selected by thin filters and multilayer mirror coatings. The detectors are 10µm pitch back illuminated CMOS Active Pixel Sensors (APS), best suited for the EUI science requirements and radiation hardness. This paper presents the EUI instrument concept and its major sub-systems. The current developments of the instrument technologies are also summarized. [less ▲]

Detailed reference viewed: 40 (7 ULg)
Full Text
See detailFirst light of SWAP on-board PROBA2
Halain, Jean-Philippe ULg; Defise, Jean-Marc ULg; Rochus, Pierre ULg et al

in Proceedings of SPIE (2010), 7732

The SWAP telescope (Sun Watcher using Active Pixel System detector and Image Processing) is an instrument launched on 2nd November 2009 on-board the ESA PROBA2 technological mission. SWAP is a space ... [more ▼]

The SWAP telescope (Sun Watcher using Active Pixel System detector and Image Processing) is an instrument launched on 2nd November 2009 on-board the ESA PROBA2 technological mission. SWAP is a space weather sentinel from a low Earth orbit, providing images at 174 nm of the solar corona. The instrument concept has been adapted to the PROBA2 mini-satellite requirements (compactness, low power electronics and a-thermal opto-mechanical system). It also takes advantage of the platform pointing agility, on-board processor, Packetwire interface and autonomous operations. The key component of SWAP is a radiation resistant CMOS-APS detector combined with onboard compression and data prioritization. SWAP has been developed and qualified at the Centre Spatial de Liège (CSL) and calibrated at the PTB-Bessy facility. After launch, SWAP has provided its first images on 14th November 2009 and started its nominal, scientific phase in February 2010, after 3 months of platform and payload commissioning. This paper summarizes the latest SWAP developments and qualifications, and presents the first light results. [less ▲]

Detailed reference viewed: 130 (5 ULg)
Full Text
Peer Reviewed
See detailPre-flight calibration of LYRA, the solar VUV radiometer on board PROBA2
Benmoussa, Ali; Dammasch, Ingolf; Hochedez, Jean-François et al

in Astronomy and Astrophysics (2009), 508(2), 1085-1094

Aims. LYRA, the Large Yield Radiometer, is a vacuum ultraviolet (VUV) solar radiometer, planned to be launched in November 2009 on the European Space Agency PROBA2, the Project for On-Board Autonomy ... [more ▼]

Aims. LYRA, the Large Yield Radiometer, is a vacuum ultraviolet (VUV) solar radiometer, planned to be launched in November 2009 on the European Space Agency PROBA2, the Project for On-Board Autonomy spacecraft. Methods: The instrument was radiometrically calibrated in the radiometry laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at the Berlin Electron Storage ring for SYnchroton radiation (BESSY II). The calibration was done using monochromatized synchrotron radiation at PTB's VUV and soft X-ray radiometry beamlines using reference detectors calibrated with the help of an electrical substitution radiometer as the primary detector standard.<BR /> Results: A total relative uncertainty of the radiometric calibration of the LYRA instrument between 1 and 11 was achieved. LYRA will provide irradiance data of the Sun in four UV passbands and with high temporal resolution down to 10 ms. The present state of the LYRA pre-flight calibration is presented as well as the expected instrument performance. [less ▲]

Detailed reference viewed: 136 (10 ULg)
Full Text
Peer Reviewed
See detailThe Heliospheric Imagers Onboard the STEREO Mission
Eyles, C. J.; Harrison, R. A.; Davis, C. et al

in Solar Physics (2009), 254

Mounted on the sides of two widely separated spacecraft, the two Heliospheric Imager (HI) instruments onboard NASA's STEREO mission view, for the first time, the space between the Sun and Earth. These ... [more ▼]

Mounted on the sides of two widely separated spacecraft, the two Heliospheric Imager (HI) instruments onboard NASA's STEREO mission view, for the first time, the space between the Sun and Earth. These instruments are wide-angle visible-light imagers that incorporate sufficient baffling to eliminate scattered light to the extent that the passage of solar coronal mass ejections (CMEs) through the heliosphere can be detected. Each HI instrument comprises two cameras, HI-1 and HI-2, which have 20° and 70° fields of view and are off-pointed from the Sun direction by 14.0° and 53.7°, respectively, with their optical axes aligned in the ecliptic plane. This arrangement provides coverage over solar elongation angles from 4.0° to 88.7° at the viewpoints of the two spacecraft, thereby allowing the observation of Earth-directed CMEs along the Sun -- Earth line to the vicinity of the Earth and beyond. Given the two separated platforms, this also presents the first opportunity to view the structure and evolution of CMEs in three dimensions. The STEREO spacecraft were launched from Cape Canaveral Air Force Base in late October 2006, and the HI instruments have been performing scientific observations since early 2007. The design, development, manufacture, and calibration of these unique instruments are reviewed in this paper. Mission operations, including the initial commissioning phase and the science operations phase, are described. Data processing and analysis procedures are briefly discussed, and ground-test results and in-orbit observations are used to demonstrate that the performance of the instruments meets the original scientific requirements. [less ▲]

Detailed reference viewed: 154 (22 ULg)
Full Text
Peer Reviewed
See detailThe DynaMICCS perspective. A mission for a complete and continuous view of the Sun dedicated to magnetism, space weather and space climate
Turck-Chièze, S.; Lamy, P.; Carr, C. et al

in Experimental Astronomy (2009), 23

The DynaMICCS mission is designed to probe and understand the dynamics of crucial regions of the Sun that determine solar variability, including the previously unexplored inner core, the radiative ... [more ▼]

The DynaMICCS mission is designed to probe and understand the dynamics of crucial regions of the Sun that determine solar variability, including the previously unexplored inner core, the radiative/convective zone interface layers, the photosphere/chromosphere layers and the low corona. The mission delivers data and knowledge that no other known mission provides for understanding space weather and space climate and for advancing stellar physics (internal dynamics) and fundamental physics (neutrino properties, atomic physics, gravitational moments...). The science objectives are achieved using Doppler and magnetic measurements of the solar surface, helioseismic and coronographic measurements, solar irradiance at different wavelengths and in-situ measurements of plasma/energetic particles/magnetic fields. The DynaMICCS payload uses an original concept studied by Thalès Alenia Space in the framework of the CNES call for formation flying missions: an external occultation of the solar light is obtained by putting an occulter spacecraft 150 m (or more) in front of a second spacecraft. The occulter spacecraft, a LEO platform of the mini sat class, e.g. PROTEUS, type carries the helioseismic and irradiance instruments and the formation flying technologies. The latter spacecraft of the same type carries a visible and infrared coronagraph for a unique observation of the solar corona and instrumentation for the study of the solar wind and imagers. This mission must guarantee long (one 11-year solar cycle) and continuous observations (duty cycle > 94%) of signals that can be very weak (the gravity mode detection supposes the measurement of velocity smaller than 1 mm/s). This assumes no interruption in observation and very stable thermal conditions. The preferred orbit therefore is the L1 orbit, which fits these requirements very well and is also an attractive environment for the spacecraft due to its low radiation and low perturbation (solar pressure) environment. This mission is secured by instrumental R and D activities during the present and coming years. Some prototypes of different instruments are already built (GOLFNG, SDM) and the performances will be checked before launch on the ground or in space through planned missions of CNES and PROBA ESA missions (PICARD, LYRA, maybe ASPIICS). [less ▲]

Detailed reference viewed: 42 (12 ULg)
Full Text
Peer Reviewed
See detailUnderstanding of optical readout accuracy with micromechanical sensor cantilever monitored by surface plasmon resonanc
Hastanin, Juriy ULg; Renotte, Yvon ULg; Fleury-Frenette, Karl ULg et al

in Optics Communications (2009), 282

This paper reports a concept of micromechanical sensing of environmental condition using the surface plasmon resonance phenomenon. We calculate the resolution in the cantilever bending monitoring using ... [more ▼]

This paper reports a concept of micromechanical sensing of environmental condition using the surface plasmon resonance phenomenon. We calculate the resolution in the cantilever bending monitoring using the transfer matrix numerical method. We show that the cantilever deflection can be monitored with a resolution in the nanometer range. The SPs resonance behavior of the multilayer stack in the case of gold cantilever is discussed. We believe that this concept permits a low cost and ease of fabrication for a large bi-dimensional array of sensors with an enhanced signal-to-noise ratio. [less ▲]

Detailed reference viewed: 44 (14 ULg)
Full Text
Peer Reviewed
See detailA gas micromechanical sensor based on surface plasmon resonance
Hastanin, Juriy ULg; Habraken, Serge ULg; Renotte, Yvon ULg et al

in Proceedings of SPIE (2008, October 02), 7116

We will present a new concept related to the micromechanical sensors for detecting the presence and concentration of chemical substances and/or biological organisms. A bi-dimensional array of micro ... [more ▼]

We will present a new concept related to the micromechanical sensors for detecting the presence and concentration of chemical substances and/or biological organisms. A bi-dimensional array of micro-cantilever coated by different types of sensing layer enables to identify a characteristic chemical composition of the gas in real-time mode. The selective molecular absorption by cantilever sensing layer will produce cantilever bending proportional to the concentration of molecules. To increase the gas sensor sensitivity, the SPR phenomenon is used for cantilever deflection monitoring. [less ▲]

Detailed reference viewed: 22 (2 ULg)
Full Text
See detailLow Concentration Solar Array Experiment on-board PROBA-2
Ruelle, V.; Rossi, Laurence ULg; Thibert, Tanguy ULg et al

in Proceedings of the 8th Space Power Conference (2008, September)

Detailed reference viewed: 98 (34 ULg)
Full Text
Peer Reviewed
See detailSun Earth Connection Coronal and Heliospheric Investigation (SECCHI)
Howard, R. A.; Moses, J. D.; Vourlidas, A. et al

in Space Science Reviews (2008), 136

The Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) is a five telescope package, which has been developed for the Solar Terrestrial Relation Observatory (STEREO) mission by the Naval ... [more ▼]

The Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) is a five telescope package, which has been developed for the Solar Terrestrial Relation Observatory (STEREO) mission by the Naval Research Laboratory (USA), the Lockheed Solar and Astrophysics Laboratory (USA), the Goddard Space Flight Center (USA), the University of Birmingham (UK), the Rutherford Appleton Laboratory (UK), the Max Planck Institute for Solar System Research (Germany), the Centre Spatiale de Leige (Belgium), the Institut d'Optique (France) and the Institut d'Astrophysique Spatiale (France). SECCHI comprises five telescopes, which together image the solar corona from the solar disk to beyond 1 AU. These telescopes are: an extreme ultraviolet imager (EUVI: 1 1.7 R[SUB]o[/SUB]), two traditional Lyot coronagraphs (COR1: 1.5 4 R[SUB]o[/SUB] and COR2: 2.5 15 R[SUB]o[/SUB]) and two new designs of heliospheric imagers (HI-1: 15 84 R[SUB]o[/SUB] and HI-2: 66 318 R[SUB]o[/SUB]). All the instruments use 2048×2048 pixel CCD arrays in a backside-in mode. The EUVI backside surface has been specially processed for EUV sensitivity, while the others have an anti-reflection coating applied. A multi-tasking operating system, running on a PowerPC CPU, receives commands from the spacecraft, controls the instrument operations, acquires the images and compresses them for downlink through the main science channel (at compression factors typically up to 20×) and also through a low bandwidth channel to be used for space weather forecasting (at compression factors up to 200×). An image compression factor of about 10× enable the collection of images at the rate of about one every 2 3 minutes. Identical instruments, except for different sizes of occulters, are included on the STEREO-A and STEREO-B spacecraft. [less ▲]

Detailed reference viewed: 62 (11 ULg)
Full Text
Peer Reviewed
See detailCMOS-APS Detectors for Solar Physics: Lessons Learned during the SWAP Preflight Calibration
De Groof, Anik; Berghmans, David; Nicula, Bogdan et al

in Solar Physics (2008)

Detailed reference viewed: 23 (3 ULg)
Full Text
See detailSolar Concentrator
Habraken, Serge ULg; Defise, Jean-Marc ULg; Collette, Jean-Paul ULg

Patent (2008)

A combination of lens and mirror for solar concentration is presented.Collection efficiency, uniformity and compactness are the main goals

Detailed reference viewed: 53 (5 ULg)
Full Text
Peer Reviewed
See detailA far infrared/terahertz micromechanical sensor based on surface plasmons resonance
Hastanin, Juriy ULg; Renotte, Yvon ULg; Fleury-Frenette, Karl ULg et al

in Proceedings of SPIE (2008), 7113

This paper describes a new concept related to the bolometric micromechanical sensors for detecting far IR and THz radiation. We believe that this concept permits a low cost and ease of fabrication of ... [more ▼]

This paper describes a new concept related to the bolometric micromechanical sensors for detecting far IR and THz radiation. We believe that this concept permits a low cost and ease of fabrication of large bi-dimensional array of sensors with an enhanced signal-to-noise ratio. The micromechanical sensor comprises a thermo-sensitive bi-material (multimaterial) micro-cantilever beam with a selective absorber dedicated to far IR and THz radiation energy, and optical readout system based on surface plasmon resonance for detecting the bending of the micro-cantilever element. To increase the radiation detector sensitivity, the SPR phenomenon is used for cantilever deflection monitoring. [less ▲]

Detailed reference viewed: 78 (16 ULg)