References of "De Winter, Julien"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThermally induced coupling of poly(thiophene)-based block copolymers prepared by Grignard metathesis polymerization: a straightforward route toward highly regioregular multiblock conjugated copolymers
Ouhib, Farid ULg; Desbief, Simon; Lazzaroni, Roberto et al

in Macromolecules (2012), 45(17), 6796-6806

We report on a convenient and simple process to prepare highly regioregular poly(thiophene)-based multiblock copolymers by a novel thermally induced coupling reaction. Diblock copolymers of 3 ... [more ▼]

We report on a convenient and simple process to prepare highly regioregular poly(thiophene)-based multiblock copolymers by a novel thermally induced coupling reaction. Diblock copolymers of 3-hexylthiophene (3HT) and 2,5-dibromo-3-(2-(2-tetrahydropyranyl-2-oxy)ethyl)thiophene (THPET) end-capped by a nickel complex (Br-P3HT-b-PTHPET-Ni(dppp)Br) are first prepared using Ni(dppp)Cl2 as catalyst at 30 °C by Grignard metathesis polymerization (GRIM process). The coupling of these α-bromo, ω-Ni(dppp)Br telechelic diblock copolymers then occurs by heating the solution of the copolymer at 80 °C for a few hours without adding any additional reagent. Reactions are complete in only 10 min when heating the copolymer at 120 °C using microwaves. The deprotection of the alcohol groups of PTHPET blocks allows further modifications such as the incorporation of acrylates by esterification. AFM analysis on thin films shows the influence of the nature of side chains (protected alcohol or acrylate), the molecular weight, and the architecture (diblock or multiblock) of the copolymer on the supramolecular organization of the polythiophene chains. [less ▲]

Detailed reference viewed: 35 (6 ULg)
Full Text
See detailTailor-made polymers by cobalt-mediated radical polymerization
Debuigne, Antoine ULg; Hurtgen, Marie ULg; De Winter, Julien et al

Poster (2010, May 25)

Detailed reference viewed: 47 (9 ULg)
Full Text
Peer Reviewed
See detailEffective cobalt-mediated radical coupling (CMRC) of poly(vinylacetate) and poly(N-vinylpyrrolidone) (co)polymer precursors
Debuigne, Antoine ULg; Poli, Rinaldo; De Winter, Julien et al

in Macromolecules (2010), 43(6), 2801-2813

Cobalt-mediated radical coupling (CMRC) is successfully applied to poly(vinyl acetate) (PVAc) and poly(N-vinylpyrrolidone) (PNVP) precursors for the first time. The coupling process is based on addition ... [more ▼]

Cobalt-mediated radical coupling (CMRC) is successfully applied to poly(vinyl acetate) (PVAc) and poly(N-vinylpyrrolidone) (PNVP) precursors for the first time. The coupling process is based on addition of isoprene onto polymer chains preformed by controlled radical polymerization with cobalt complexes (CMRP). The extents of coupling were high (>90%) to moderate (75-80%) for PVAc and PNVP precursors, respectively. Effects of the length of the polymer precursors and conditions used in the polymerization step on the coupling efficiency are discussed. Mass spectrometry (MS) and nuclear magnetic resonance (NMR) analyses conducted on the coupling products demonstrate the preferential insertion of two isoprene units in the final polymers. The CMRC mechanistic proposal, supported by DFT calculations, is based on this microstructure feature. Finally, illustration of the macromolecular engineering potential of this technique is given by the preparation of symmetrical PVAc-b-PNVP-b-PVAc triblock copolymers starting from the corresponding PVAc-b-PNVP-[Co] diblock copolymer. [less ▲]

Detailed reference viewed: 49 (18 ULg)
Full Text
Peer Reviewed
See detailCobalt mediated radical coupling (CMRC) : an unusual route to midchain-functionalized symmetrical macromolecules
Debuigne, Antoine ULg; Poli, Rinaldo; De Winter, Julien et al

in Chemistry : A European Journal (2010), 16(5), 1799-1811

Cobalt-mediated radical coupling (CMRC) is a straightforward approach to the synthesis of symmetrical macromolecules that relies on the addition of 1,3-diene compounds onto polymer precursors preformed by ... [more ▼]

Cobalt-mediated radical coupling (CMRC) is a straightforward approach to the synthesis of symmetrical macromolecules that relies on the addition of 1,3-diene compounds onto polymer precursors preformed by cobalt-mediated radical polymerization (CMRP). Mechanistic features that make this process so efficient for radical polymer coupling are reported here. The mechanism was established on the basis of NMR spectroscopy and MALDI-MS analyses of the coupling product and corroborated by DFT calculations. A key feature of CMRC is the preferential insertion of two diene units in the middle of the chain of the coupling product mainly according to a trans-1,4-addition pathway. The large tolerance of CMRC towards the diene structure is demonstrated and the impact of this new coupling method on macromolecular engineering is discussed, especially for midchain functionalization of polymers. It is worth noting that the interest in CMRC goes beyond the field of polymer chemistry, since it constitutes a novel carbon-carbon bond formation method that could be applied to small organic molecules. [less ▲]

Detailed reference viewed: 73 (14 ULg)
See detailCobalt-mediated radical polymerization (CMRP) and coupling reaction (CMRC): mechanistic advances ans synthetic opportunities
Debuigne, Antoine ULg; Poli, Rinaldo; De Winter, Julien et al

Poster (2009, December 14)

Detailed reference viewed: 34 (10 ULg)