References of "De Groof, Geert"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailTopography and Lateralized Effect of Acute Aromatase Inhibition on Auditory Processing in a Seasonal Songbird
de groof, Geert; Balthazart, Jacques ULg; Cornil, Charlotte ULg et al

in Journal of Neuroscience (2017), 37(16), 4243-4254

It is increasingly recognized that brain-derived estrogens (neuroestrogens) can regulate brain physiology and behavior much faster than what was previously known from the transcriptional action of ... [more ▼]

It is increasingly recognized that brain-derived estrogens (neuroestrogens) can regulate brain physiology and behavior much faster than what was previously known from the transcriptional action of estrogens on nuclear receptors. One of the best examples of such neuro- modulation by neuroestrogens concerns the acute regulation of sensory coding by the auditory cortex as demonstrated by electrophys- iological studies of selected neurons in zebra finches. Yet, the spatial extent of such modulation by neuroestrogens is not known. Using functional magnetic resonance imaging, we demonstrate here that acute estrogen depletion alters within minutes auditory processing in male European starlings. These effects are confined to very specific but large areas of the auditory cortex. They are also specifically lateralized to the left hemisphere. Interestingly, the modulation of auditory responses by estrogens was much larger (both in amplitude and in topography) in March than in December or May/June. This effect was presumably independent from changes in circulating testosterone concentrations since levels of the steroid were controlled by subcutaneous implants, thus suggesting actions related to other aspects of the seasonal cycle or photoperiodic manipulations. Finally, we also show that estrogen production specifically modulates selectivity for behaviorally relevant vocalizations in a specific part of the caudomedial nidopallium. These findings confirm and extend previous conclusions that had been obtained by electrophysiological techniques. This approach provides a new very powerful tool to investigate auditory responsiveness in songbirds and its fast modulation by sex steroids. [less ▲]

Detailed reference viewed: 21 (1 ULg)
Full Text
Peer Reviewed
See detailOwn song selectivity in the songbird auditory pathway: Suppression by norepinephrine
Poirier, Colline; Boumans, Tiny; Vellema, Michiel et al

in PLoS ONE (2011), 6(5), 20131

Detailed reference viewed: 23 (2 ULg)
See detailOwn song selectivity in the songbird auditory pathway: suppression by norepinephrine
Poirier, Colline; Boumans, Tiny; Vellema, Michiel et al

Poster (2010)

Detailed reference viewed: 7 (0 ULg)
Full Text
Peer Reviewed
See detailSeasonal rewiring of the songbird brain: an in vivo MRI study.
De Groof, Geert; Verhoye, Marleen; Van Meir, Vincent et al

in European Journal of Neuroscience (2008), 28(12), 2475-852474

The song control system (SCS) of songbirds displays a remarkable plasticity in species where song output changes seasonally. The mechanisms underlying this plasticity are barely understood and research ... [more ▼]

The song control system (SCS) of songbirds displays a remarkable plasticity in species where song output changes seasonally. The mechanisms underlying this plasticity are barely understood and research has primarily been focused on the song nuclei themselves, largely neglecting their interconnections and connections with other brain regions. We investigated seasonal changes in the entire brain, including the song nuclei and their connections, of nine male starlings (Sturnus vulgaris). At two times of the year, during the breeding (April) and nonbreeding (July) seasons, we measured in the same subjects cellular attributes of brain regions using in vivo high-resolution diffusion tensor imaging (DTI) at 7 T. An increased fractional anisotropy in the HVC-RA pathway that correlates with an increase in axonal density (and myelination) was found during the breeding season, confirming multiple previous histological reports. Other parts of the SCS, namely the occipitomesencephalic axonal pathway, which contains fiber tracts important for song production, showed increased fractional anisotropy due to myelination during the breeding season and the connection between HVC and Area X showed an increase in axonal connectivity. Beyond the SCS we discerned fractional anisotropy changes that correlate with myelination changes in the optic chiasm and axonal organization changes in an interhemispheric connection, the posterior commissure. These results demonstrate an unexpectedly broad plasticity in the connectivity of the avian brain that might be involved in preparing subjects for the competitive and demanding behavioral tasks that are associated with successful reproduction. [less ▲]

Detailed reference viewed: 41 (1 ULg)
See detailRapid testosterone-induced apparent diffusion coefficient (ADC) changes in the sexually dimorphic medial preoptic nucleus of male Japanese quail.
Van Der Linden, Annemie; De Groof, Geert; Charlier, Thierry ULg et al

Poster (2006)

Testosterone (T) influences the volume and cellular characteristics of a variety of steroid-dependent brain nuclei in many vertebrates. In castrated quail, the volume of the sexually dimorphic (males ... [more ▼]

Testosterone (T) influences the volume and cellular characteristics of a variety of steroid-dependent brain nuclei in many vertebrates. In castrated quail, the volume of the sexually dimorphic (males > females) medial preoptic nucleus (POM), a key area in the control of male sexual behavior, is markedly increased by T but previous studies always assessed this effect after a period of 8-14 days and its specific time-course was unknown. We recently found that following treatment with T, the POM volume increases in a time-dependent fashion: a significant increase was already detected after only one day and the response reached it maximum (volume doubling) after 14 days of treatment. This however raised the question of the cellular mechanism underlying such a rapid brain plasticity (increase in cell size, neuropil volume, dendritic branching, extracellular space?). To research whether a change in extra- vs. intra-cellular space could be responsible for the rapid T-induced increase in POM volume, we repeatedly analyzed by in vivo diffusion-weighted magnetic resonance imaging (DW-MRI) the brain of castrated male quail before as well as after 1, 2, 7 and 14 days of T implantation. MRI was performed on a 7T-system (Bruker) using a multislice diffusion weighted-spin echo sequence. Coronal slices with an image resolution of 100*100*500µm³ were obtained covering the whole telencephalon. Images were accurately coregistered allowing voxel-wise paired comparisons of the ADC data between the different time periods. The ADC significantly increased after one day of T treatment (696±16 vs 758±30 µm²/s, p=0.011, N=5) in POM and this effect apparently persisted during the whole experiment. By contrast, T insensitive regions like the nucleus rotundus (586±170 vs 511±26 µm²/s, p-value=0.24) and nucleus mesencephalicus lateralis, pars dorsalis (934±107 vs 911±64 µm²/s, p=0.68) were not affected after the first day nor later in the experiment. These data indicate that T increases the extracellular water volume in POM specifically, either as a result of cell shrinkage or of an increase in the space between cells, and that changes in the ratio of extra- to intra-cellular water mediate, at least in part, the fast plasticity of the POM volume observed after exposure to T. [less ▲]

Detailed reference viewed: 71 (1 ULg)