References of "Danchi, W. C"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailNulling Data Reduction and On-sky Performance of the Large Binocular Telescope Interferometer
Defrere, Denis ULg; Hinz, P. M.; Mennesson, B. et al

in Astrophysical Journal (2016), 824

The Large Binocular Telescope Interferometer (LBTI) is a versatile instrument designed for high angular resolution and high-contrast infrared imaging (1.5-13 μm). In this paper, we focus on the mid ... [more ▼]

The Large Binocular Telescope Interferometer (LBTI) is a versatile instrument designed for high angular resolution and high-contrast infrared imaging (1.5-13 μm). In this paper, we focus on the mid-infrared (8-13 μm) nulling mode and present its theory of operation, data reduction, and on-sky performance as of the end of the commissioning phase in 2015 March. With an interferometric baseline of 14.4 m, the LBTI nuller is specifically tuned to resolve the habitable zone of nearby main-sequence stars, where warm exozodiacal dust emission peaks. Measuring the exozodi luminosity function of nearby main-sequence stars is a key milestone to prepare for future exo-Earth direct imaging instruments. Thanks to recent progress in wavefront control and phase stabilization, as well as in data reduction techniques, the LBTI demonstrated in 2015 February a calibrated null accuracy of 0.05% over a 3 hr long observing sequence on the bright nearby A3V star β Leo. This is equivalent to an exozodiacal disk density of 15-30 zodi for a Sun-like star located at 10 pc, depending on the adopted disk model. This result sets a new record for high-contrast mid-infrared interferometric imaging and opens a new window on the study of planetary systems. [less ▲]

Detailed reference viewed: 29 (12 ULg)
Full Text
See detailSimultaneous Water Vapor and Dry Air Optical Path Length Measurements and Compensation with the Large Binocular Telescope Interferometer
Defrere, Denis ULg; Hinz, P.; Downey, E. et al

in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2016)

The Large Binocular Telescope Interferometer uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution ... [more ▼]

The Large Binocular Telescope Interferometer uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 microns). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI/MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illustrate the feasibility of our feedforward approach to stabilize the path length fluctuations seen by the LBTI nuller. [less ▲]

Detailed reference viewed: 18 (6 ULg)
Full Text
Peer Reviewed
See detailFirst-light LBT Nulling Interferometric Observations: Warm Exozodiacal Dust Resolved within a Few AU of eta Crv
Defrere, Denis ULg; Hinz, P. M.; Skemer, A. J. et al

in Astrophysical Journal (2015), 799

We report on the first nulling interferometric observations with the Large Binocular Telescope Interferometer (LBTI), resolving the N' band (9.81-12.41 μm) emission around the nearby main-sequence star η ... [more ▼]

We report on the first nulling interferometric observations with the Large Binocular Telescope Interferometer (LBTI), resolving the N' band (9.81-12.41 μm) emission around the nearby main-sequence star η Crv (F2V, 1-2 Gyr). The measured source null depth amounts to 4.40% ± 0.35% over a field-of-view of 140 mas in radius (~2.6 AU for the distance of η Crv) and shows no significant variation over 35° of sky rotation. This relatively low null is unexpected given the total disk to star flux ratio measured by the Spitzer Infrared Spectrograph (IRS; ~23% across the N' band), suggesting that a significant fraction of the dust lies within the central nulled response of the LBTI (79 mas or 1.4 AU). Modeling of the warm disk shows that it cannot resemble a scaled version of the solar zodiacal cloud unless it is almost perpendicular to the outer disk imaged by Herschel. It is more likely that the inner and outer disks are coplanar and the warm dust is located at a distance of 0.5-1.0 AU, significantly closer than previously predicted by models of the IRS spectrum (~3 AU). The predicted disk sizes can be reconciled if the warm disk is not centrosymmetric, or if the dust particles are dominated by very small grains. Both possibilities hint that a recent collision has produced much of the dust. Finally, we discuss the implications for the presence of dust for the distance where the insolation is the same as Earth's (2.3 AU). [less ▲]

Detailed reference viewed: 29 (9 ULg)
Full Text
See detailCo-phasing the Large Binocular Telescope: status and performance of LBTI/PHASECam
Defrere, Denis ULg; Hinz, P.; Downey, E. et al

in Optical and Infrared Interferometry IV (2014, July 01)

The Large Binocular Telescope Interferometer is a NASA-funded nulling and imaging instrument designed to coherently combine the two 8.4-m primary mirrors of the LBT for high-sensitivity, high-contrast ... [more ▼]

The Large Binocular Telescope Interferometer is a NASA-funded nulling and imaging instrument designed to coherently combine the two 8.4-m primary mirrors of the LBT for high-sensitivity, high-contrast, and highresolution infrared imaging (1.5-13 μm). PHASECam is LBTI's near-infrared camera used to measure tip-tilt and phase variations between the two AO-corrected apertures and provide high-angular resolution observations. We report on the status of the system and describe its on-sky performance measured during the first semester of 2014. With a spatial resolution equivalent to that of a 22.8-meter telescope and the light-gathering power of single 11.8-meter mirror, the co-phased LBT can be considered to be a forerunner of the next-generation extremely large telescopes (ELT). [less ▲]

Detailed reference viewed: 34 (11 ULg)
Full Text
See detailThe Hunt for Observable Signatures of Terrestrial Planetary Systems (HOSTS)
Defrere, Denis ULg; Hinz, P.; Bryden, G. et al

Conference (2014, March)

The presence of large amounts of exozodiacal dust around nearby main sequence stars is considered as a potential threat for the direct imaging of Earth-like exoplanets and, hence, the search for ... [more ▼]

The presence of large amounts of exozodiacal dust around nearby main sequence stars is considered as a potential threat for the direct imaging of Earth-like exoplanets and, hence, the search for biosignatures (Roberge et al. 2012). However, it is also considered as a signpost for the presence of terrestrial planets that might be hidden in the dust disk (Stark and Kuchner 2008). Characterizing exozodiacal dust around nearby sequence stars is therefore a crucial step toward one of the main goals of modern astronomy: finding extraterrestrial life. After briefly reviewing the latest results in this field, we present the exozodiacal dust survey on the Large Binocular Telescope Interferometer (LBTI). The survey is called HOSTS and is specifically designed to determine the prevalence and brightness of exozodiacal dust disks with the sensitivity required to prepare for future New Worlds Missions that will image Earth-like exoplanets. To achieve this objective, the LBTI science team has carefully established a balanced list of 50 nearby main-sequence stars that are likely candidates of these missions and/or can be observed with the best instrument performance (see companion abstract by Roberge et al.). Exozodiacal dust disk candidates detected by the Keck Interferometer Nuller will also be observed. The first results of the survey will be presented. To precisely detect exozodiacal dust, the LBTI combines the two 8-m primary mirrors of the LBT using N-band nulling interferometry. Interferometric combination provides the required angular resolution (70-90 mas) to resolve the habitable zone of nearby main sequence stars while nulling is used to subtract the stellar light and reach the required contrast of a few 10-4. A Kband fringe tracker ensures the stability of the null. The current performance of the instrument and the first nulling measurements will be presented. [less ▲]

Detailed reference viewed: 16 (2 ULg)
See detailTarget Selection for the LBTI Hunt for Observable Signatures of Terrestrial Planetary Systems
Weinberger, Alycia J.; Roberge, A.; Kennedy, G. et al

in American Astronomical Society Meeting Abstracts #223 (2014, January 01)

The Hunt for Observable Signatures of Terrestrial planetary Systems (HOSTS) on the Large Binocular Telescope Interferometer (LBTI) will survey nearby stars for faint exozodiacal dust (exozodi). About 20 ... [more ▼]

The Hunt for Observable Signatures of Terrestrial planetary Systems (HOSTS) on the Large Binocular Telescope Interferometer (LBTI) will survey nearby stars for faint exozodiacal dust (exozodi). About 20% of field stars have cold debris disks created by the collisions and evaporation of planetesimals. Much less is known about warm circumstellar dust, such as that found in the vicinity of the Earth in our own system. This dust is generated in asteroidal collisions and cometary breakups, and current detection limits are at best ~500 times our system's level, i.e. 500 zodi. LBTI-HOSTS will be the first survey capable of measuring exozodi at the 10 zodi level (3σ). Exozodi of this brightness would be the major source of astrophysical noise for a future space telescope aimed at direct imaging and spectroscopy of habitable zone terrestrial planets. Detections of warm dust will also reveal new information about planetary system architectures and evolution. We describe the target star selection by the LBTI Science Team to satisfy the goals of the HOSTS survey -- to fully inform target selection for a future exoEarth mission. We are interested in actual stars likely to be observed by a mission and stars whose observation will enable sensible extrapolations to those stars that cannot be observed. We integrated two approaches to generate the HOSTS target list. The mission-driven approach concentrates on F, G, and K-type stars that are the best targets for future direct observations of exoEarths, thereby providing model-independent “ground truth” dust observations. However, not every potential target of a future exoEarth mission can be observed with LBTI. The sensitivity-driven approach selects targets based only on what exozodi sensitivity could be achieved, without consideration of exoEarth mission constraints. This naturally selects more luminous stars (A and early F-type stars). In both cases, all stars are close enough to Earth such that their habitable zones are resolvable by LBTI and bright enough at N-band (10 μm) to provide excellent sensitivity. We also discuss observational and astrophysical motivations for excluding binaries of certain separations. [less ▲]

Detailed reference viewed: 6 (1 ULg)
Full Text
See detailExozodi disk models for the HOSTS survey on the LBTI
Wyatt, Mark; Kennedy, G.; Skemer, A. et al

in American Astronomical Society Meeting Abstracts #223 (2014, January 01)

This poster describes a simple model for exozodiacal emission that was developed to interpret observations of the Hunt for Observable Signatures of Terrestrial planetary Systems (HOSTS) project on the ... [more ▼]

This poster describes a simple model for exozodiacal emission that was developed to interpret observations of the Hunt for Observable Signatures of Terrestrial planetary Systems (HOSTS) project on the Large Binocular Telescope Interferometer (LBTI). HOSTS is a NASA-funded key science project using mid-infrared nulling interferometry at the LBTI to seach for faint exozodiacal dust (exozodi) in the habitable zones of nearby stars. The aim was to make a model that includes the fewest possible assumptions, so that it is easy to characterize how choices of model parameters affect what can be inferred from the observations. However the model is also sufficiently complex that it can be compared in a physically meaningful way with the level of dust in the Solar System, and can also be readily used to assess the impact of a detection (or of a non-detection) on the ability of a mission to detect Earth-like planets. Here we describe the model, and apply it to the sample of stars being searched by HOSTS to determine the zodi level (i.e., the number of Solar System zodiacal clouds) that would be needed for a detection for each star in the survey. Particular emphasis is given to our definition of a zodi, and what that means for stars of different luminosity, and a comparison is given between different zodi definitions justifying our final choice. The achievable exozodi levels range from 1-20 zodi for different stars in the prime sample for a 0.01% null depth, with a median level of 2.5 zodi. [less ▲]

Detailed reference viewed: 12 (3 ULg)
Full Text
Peer Reviewed
See detailParasitic interference in nulling interferometry
Matter, A.; Defrere, Denis ULg; Danchi, W. C. et al

in Monthly Notices of the Royal Astronomical Society (2013), 431(2), 1286-1295

Nulling interferometry aims to detect faint objects close to bright stars. Its principle is to produce a destructive interference along the line of sight so that the stellar flux is rejected, while the ... [more ▼]

Nulling interferometry aims to detect faint objects close to bright stars. Its principle is to produce a destructive interference along the line of sight so that the stellar flux is rejected, while the flux of the off-axis source can be transmitted. In practice, various instrumental perturbations can degrade the nulling performance. Any imperfection in phase, amplitude or polarization produces a spurious flux that leaks to the interferometer output and corrupts the transmitted off-axis flux. One of these instrumental perturbations is the crosstalk phenomenon, which occurs because of multiple parasitic reflections inside transmitting optics, and/or diffraction effects related to beam propagation along finite size optics. It can include a crosstalk of a beam with itself, and a mutual crosstalk between different beams. This can create a parasitic interference pattern, which degrades the intrinsic transmission map - or intensity response - of the interferometer. In this context, we describe how this instrumental effect impairs the performance of a Bracewell interferometer. A simple formalism is developed to derive the corresponding modified intensity response of the interferometer, as a function of the two parameters of interest: the crosstalk level (or contamination rate) and the phase shift between the primary and secondary - parasitic - beams. We then apply our mathematical approach to a few scientific cases, both analytically and using the GENIESIM simulation software, adapted to handle coherent crosstalk. Our results show that a coherent crosstalk level of about 1 per cent implies a 20 per cent drop of the signal-to-noise ratio at most. Careful attention should thus be paid to reduce the crosstalk level inside an interferometric instrument and ensure an instrumental stability that provides the necessary sensitivity through calibration procedures. [less ▲]

Detailed reference viewed: 51 (2 ULg)
Full Text
See detailParasitic interference in classical and nulling stellar interferometry
Matter, A.; Defrere, Denis ULg; Danchi, W. C. et al

in Optical and Infrared Interferometry III (2012, July 01)

A variety of instrumental effects can corrupt the observable quantities in optical or nulling stellar interferometry. One such effect is parasitic interference, which can occur inside an interferometric ... [more ▼]

A variety of instrumental effects can corrupt the observable quantities in optical or nulling stellar interferometry. One such effect is parasitic interference, which can occur inside an interferometric instrument. Because of diffraction effects related to beam propagation along finite size optics, or parasitic reflections inside transmitting optics, a coherent crosstalk may occur between the beams and create a parasitic interference pattern superimposed on the genuine one. We developed an analytical approach to describe the impact of this effect on the observables of classical and nulling stellar interferometers. Considering classical interferometry, we show that differential phase and closure phase are both corrupted, depending on the crosstalk level and the residual piston between the beams. Considering typical specifications of piston correction of ground-based interferometers (≍ 100 nm), the detection of hot Jupiter-like planets by differential phase implies a tolerance on the parasitic flux to about 5% of the incident intensity. Also, we show that the closure phase relation does not remove this parasitic contribution. The corresponding corrupted closure phase is not zero for an unresolved source, and depends on the residual piston. Considering nulling interferometry, we show that parasitic effects modify the transmission map level, depending on the crosstalk level and the phase shift between primary and secondary beams. In the extreme case of a pi-phase shift, the crosstalk effect implies a decrease of the final output signal-to-noise ratio. Numerical simulations, adapted to handle consistently crosstalk, are then performed to estimate this degradation and validate our theoretical study. [less ▲]

Detailed reference viewed: 14 (1 ULg)
Full Text
See detailInfrared Detection and Characterization of Debris Disks, Exozodiacal Dust, and Exoplanets: The FKSI Mission Concept
Danchi, W. C.; Barry, R. K.; Lopez, B. et al

in Coudé du Foresto, Vincent; Gelino, Dawn; Ribas, Ignasi (Eds.) Pathways Towards Habitable Planets (2010, October 01)

The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for a nulling interferometer for the near-to-mid-infrared spectral region. FKSI is conceived as a mid-sized strategic or Probe class ... [more ▼]

The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for a nulling interferometer for the near-to-mid-infrared spectral region. FKSI is conceived as a mid-sized strategic or Probe class mission. FKSI has been endorsed by the Exoplanet Community Forum 2008 as such a mission and has been costed to be within the expected budget. The current design of FKSI is a two-element nulling interferometer. The two telescopes, separated by 12.5m, are precisely pointed (by small steering mirrors) on the target star. The two path lengths are accurately controlled to be the same to within a few nanometers. A phase shifter/beam combiner (Mach-Zehnder interferometer) produces an output beam consisting of the nulled sum of the target planet’s light and the host star’s light. When properly oriented, the starlight is nulled by a factor of 10[SUP]-4[/SUP], and the planet light is undiminished. Accurate modeling of the signal is used to subtract the residual starlight, permitting the detection of planets much fainter than the host star. The current version of FKSI with 0.5-m apertures and waveband 3-8 μm has the following main capabilities: (1) detect exozodiacal emission levels to that of our own solar system (Solar System Zodi) around nearby F, G, and K stars; (2) characterize spectroscopically the atmospheres of a large number of known non-transiting planets; (3) survey and characterize nearby stars for planets down to 2 R[SUB]earth[/SUB] from just inside the habitable zone and inward. An enhanced version of FKSI with 1-m apertures separated by 20 m and cooled to 40 K, with science waveband 5-15 μm, allows for the detection and characterization of 2 R[SUB]earth[/SUB] super-Earths and smaller planets in the habitable zone around stars within about 30 pc. [less ▲]

Detailed reference viewed: 21 (0 ULg)
Full Text
See detailDo we Need to Solve the Exozodi Question? If Yes, How to Best Solve It?
Absil, Olivier ULg; Eiroa, C.; Augereau, J. et al

in Coudé du Foresto, Vincent; Gelino, Dawn; Ribas, Ignasi (Eds.) Pathways Towards Habitable Planets (2010, October 01)

When observing an extrasolar planetary system, the most luminous component after the star itself is generally the light scattered and/or thermally emitted by a population of micron-sized dust grains ... [more ▼]

When observing an extrasolar planetary system, the most luminous component after the star itself is generally the light scattered and/or thermally emitted by a population of micron-sized dust grains. These grains are expected to be continuously replenished by the collisions and evaporation of larger bodies just as in our solar zodiacal cloud. Exozodiacal clouds (“exozodis”) must therefore be seriously taken into account when attempting to directly image faint Earth-like planets (exoEarths, for short). This paper summarizes the oral contributions and discussions that took place during the Satellite Meeting on exozodiacal dust disks, in an attempt to address the following two questions: Do we need to solve the exozodi question? If yes, how to best solve it? [less ▲]

Detailed reference viewed: 18 (0 ULg)
See detailThe Fourier-Kelvin Stellar Interferometer: Exploring Exoplanetary Systems with an Infrared Probe-class Mission
Barry, R. K.; Danchi, W. C.; Lopez, B. et al

in Coudé du Foresto, Vincent; Gelino, Dawn; Ribas, Ignasi (Eds.) Pathways Towards Habitable Planets (2010, October 01)

We report results of a recent engineering study of an enhanced version of the Fourier-Kelvin Stellar Interferometer (FKSI) that includes 1-m diameter primary mirrors, a 20-m baseline, a sun shield with a ... [more ▼]

We report results of a recent engineering study of an enhanced version of the Fourier-Kelvin Stellar Interferometer (FKSI) that includes 1-m diameter primary mirrors, a 20-m baseline, a sun shield with a ±45° Field-of-Regard (FoR), and 40K operating temperature. The enhanced FKSI is a two-element nulling interferometer operating in the mid-infrared (e.g. ˜ 5-15 μm) designed to measure exozodiacal debris disks around nearby stars with a sensitivity better than one solar system zodi (SSZ) and to characterize the atmospheres of a large sample of known exoplanets. The modifications to the original FKSI design also allows observations of the atmospheres of many super-Earths and a few Earth twins using a combination of spatial modulation and spectral analysis. [less ▲]

Detailed reference viewed: 30 (0 ULg)
Full Text
Peer Reviewed
See detailResolving the cold debris disc around a planet-hosting star. PACS photometric imaging observations of q1 Eridani (HD 10647, HR 506)
Liseau, R.; Eiroa, C.; Fedele, D. et al

in Astronomy and Astrophysics (2010), 518

Context. About two dozen exo-solar debris systems have been spatially resolved. These debris discs commonly display a variety of structural features such as clumps, rings, belts, excentric distributions ... [more ▼]

Context. About two dozen exo-solar debris systems have been spatially resolved. These debris discs commonly display a variety of structural features such as clumps, rings, belts, excentric distributions and spiral patterns. In most cases, these features are believed to be formed, shaped and maintained by the dynamical influence of planets orbiting the host stars. In very few cases has the presence of the dynamically important planet(s) been inferred from direct observation. Aims. The solar-type star q1 Eri is known to be surrounded by debris, extended on scales of 30”. The star is also known to host at least one planet, albeit on an orbit far too small to make it responsible for structures at distances of tens to hundreds of AU. The aim of the present investigation is twofold: to determine the optical and material properties of the debris and to infer the spatial distribution of the dust, which may hint at the presence of additional planets. Methods. The Photodetector Array Camera and Spectrometer (PACS) aboard the Herschel Space Observatory allows imaging observations in the far infrared at unprecedented resolution, i.e. at better than 6” to 12” over the wavelength range of 60 μm to 210 μm. Together with the results from ground-based observations, these spatially resolved data can be modelled to determine the nature of the debris and its evolution more reliably than what would be possible from unresolved data alone. Results. For the first time has the q1 Eri disc been resolved at far infrared wavelengths. The PACS observations at 70 μm, 100 μm and 160 μm reveal an oval image showing a disc-like structure in all bands, the size of which increases with wavelength. Assuming a circular shape yields the inclination of its equatorial plane with respect to that of the sky, i > 53°. The results of image de-convolution indicate that i likely is larger than 63°, where 90° corresponds to an edge-on disc. Conclusions. The observed emission is thermal and optically thin. The resolved data are consistent with debris at temperatures below 30 K at radii larger than 120 AU. From image de-convolution, we find that q1 Eri is surrounded by an about 40 AU wide ring at the radial distance of ~85 AU. This is the first real Edgeworth-Kuiper Belt analogue ever observed. [less ▲]

Detailed reference viewed: 64 (3 ULg)
Full Text
See detailTechnology for a Mid-IR Flagship Mission to Characterize Earth-like Exoplanets
Lawson, P. R.; Absil, Olivier ULg; Akeson, R. L. et al

E-print/Working paper (2009)

The exploration of Earth-like exoplanets will be enabled at mid-infrared wavelengths through technology and engineering advances in nulling interferometry and precision formation flying. Nulling ... [more ▼]

The exploration of Earth-like exoplanets will be enabled at mid-infrared wavelengths through technology and engineering advances in nulling interferometry and precision formation flying. Nulling interferometry provides the dynamic range needed for the detection of biomarkers. Formation flying provides the angular resolution required in the mid-infrared to separately distinguish the spectra of planets in multi-planet systems. The flight performance requirements for nulling have been met and must now be validated in a flight-like environment. Formation-flying algorithms have been demonstrated in the lab and must now be validated in space. Our proposed technology program is described. [less ▲]

Detailed reference viewed: 33 (4 ULg)
Full Text
Peer Reviewed
See detailDarwin-A Mission to Detect and Search for Life on Extrasolar Planets
Cockell, C. S.; Léger, A.; Fridlund, M. et al

in Astrobiology (2009), 9(1)

The discovery of extrasolar planets is one of the greatest achievements of modern astronomy. The detection of planets that vary widely in mass demonstrates that extrasolar planets of low mass exist. In ... [more ▼]

The discovery of extrasolar planets is one of the greatest achievements of modern astronomy. The detection of planets that vary widely in mass demonstrates that extrasolar planets of low mass exist. In this paper, we describe a mission, called Darwin, whose primary goal is the search for, and characterization of, terrestrial extrasolar planets and the search for life. Accomplishing the mission objectives will require collaborative science across disciplines, including astrophysics, planetary sciences, chemistry, and microbiology. Darwin is designed to detect rocky planets similar to Earth and perform spectroscopic analysis at mid-infrared wavelengths (6-20 mum), where an advantageous contrast ratio between star and planet occurs. The baseline mission is projected to last 5 years and consists of approximately 200 individual target stars. Among these, 25-50 planetary systems can be studied spectroscopically, which will include the search for gases such as CO[SUB]2[/SUB], H[SUB]2[/SUB]O, CH[SUB]4[/SUB], and O[SUB]3[/SUB]. Many of the key technologies required for the construction of Darwin have already been demonstrated, and the remainder are estimated to be mature in the near future. Darwin is a mission that will ignite intense interest in both the research community and the wider public. [less ▲]

Detailed reference viewed: 192 (19 ULg)
Full Text
See detailMatisse
Lopez, B.; Lagarde, S.; Wolf, S. et al

in Moorwood, 1 (Ed.) Science with the VLT in the ELT Era (2009)

MATISSE is foreseen as a mid-infrared spectro-interferometer combining the beams of up to four UTs/ATs of the Very Large Telescope Interferometer (VLTI). MATISSE will measure closure phase relations and ... [more ▼]

MATISSE is foreseen as a mid-infrared spectro-interferometer combining the beams of up to four UTs/ATs of the Very Large Telescope Interferometer (VLTI). MATISSE will measure closure phase relations and thus offer an efficient capability for image reconstruction in the L, M and N bands of the mid-infrared domain. [less ▲]

Detailed reference viewed: 16 (1 ULg)
Full Text
See detailMATISSE Science Cases
Wolf, S.; Lopez, B.; Jaffe, W. et al

in Moorwood, A. (Ed.) Science with the VLT in the ELT Era (2009)

MATISSE is foreseen as a mid-infrared spectro-interferometric instrument combining the beams of up to four UTs/ATs of the Very Large Telescope Interferometer (VLTI). MATISSE will measure closure phase ... [more ▼]

MATISSE is foreseen as a mid-infrared spectro-interferometric instrument combining the beams of up to four UTs/ATs of the Very Large Telescope Interferometer (VLTI). MATISSE will measure closure phase relations and thus offer an efficient capability for image reconstruction. In addition to this, MATISSE will open 2 new observing windows at the VLTI: the L and M band in addition to the N band. Furthermore, the instrument will offer the possibility to perform simultaneous observations in separate bands. MATISSE will also provide several spectroscopic modes. In summary, MATISSE can be seen as a successor of MIDI by providing imaging capabilities in the mid-infrared domain (for a more detailed description of MATISSE see Lopez et al., these proceedings). [less ▲]

Detailed reference viewed: 17 (0 ULg)
Full Text
Peer Reviewed
See detailNulling interferometry: performance comparison between space and ground-based sites for exozodiacal disc detection
Defrere, Denis ULg; Absil, Olivier ULg; Coudé Du Foresto, V. et al

in Astronomy and Astrophysics (2008), 490

Context: Characterising the circumstellar dust around nearby main sequence stars is a necessary step in understanding the planetary formation process and is crucial for future life-finding space missions ... [more ▼]

Context: Characterising the circumstellar dust around nearby main sequence stars is a necessary step in understanding the planetary formation process and is crucial for future life-finding space missions such as ESA's Darwin or NASA's terrestrial planet finder (TPF). Besides paving the technological way to Darwin/TPF, the space-based infrared interferometers Pegase and FKSI (Fourier-Kelvin Stellar Interferometer) will be valuable scientific precursors. Aims: We investigate the performance of Pegase and FKSI for exozodiacal disc detection and compare the results with ground-based nulling interferometers. Methods: We used the GENIEsim software (Absil et al. 2006, A&A, 448, 787) which was designed and validated to study the performance of ground-based nulling interferometers. The software has been adapted to simulate the performance of space-based nulling interferometers by disabling all atmospheric effects and by thoroughly implementing the perturbations induced by payload vibrations in the ambient space environment. Results: Despite using relatively small telescopes (<=0.5 m), Pegase and FKSI are very efficient for exozodiacal disc detection. They are capable of detecting exozodiacal discs 5 and 1 time respectively, as dense as the solar zodiacal cloud, and they outperform any ground-based instrument. Unlike Pegase, FKSI can achieve this sensitivity for most targets of the Darwin/TPF catalogue thanks to an appropriate combination of baseline length and observing wavelength. The sensitivity of Pegase could, however, be significantly boosted by considering a shorter interferometric baseline length. Conclusions: Besides their main scientific goal (characterising hot giant extrasolar planets), the space-based nulling interferometers Pegase and FKSI will be very efficient in assessing within a few minutes the level of circumstellar dust in the habitable zone around nearby main sequence stars down to the density of the solar zodiacal cloud. These space-based interferometers would be complementary to Antarctica-based instruments in terms of sky coverage and would be ideal instruments for preparing future life-finding space missions. [less ▲]

Detailed reference viewed: 26 (4 ULg)