References of "Damiani, C"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission. XXIV. CoRoT-25b and CoRoT-26b: two low-density giant planets
Almenara, J. M.; Bouchy, F.; Gaulme, P. et al

in Astronomy and Astrophysics (2013), 555

We report the discovery of two transiting exoplanets, CoRoT-25b and CoRoT-26b, both of low density, one of which is in the Saturn mass-regime. For each star, ground-based complementary observations ... [more ▼]

We report the discovery of two transiting exoplanets, CoRoT-25b and CoRoT-26b, both of low density, one of which is in the Saturn mass-regime. For each star, ground-based complementary observations through optical photometry and radial velocity measurements secured the planetary nature of the transiting body and allowed us to fully characterize them. For CoRoT-25b we found a planetary mass of 0.27 ± 0.04 M[SUB]Jup[/SUB], a radius of 1.08[SUB]-0.10[/SUB][SUP]+0.3[/SUP] R[SUB]Jup[/SUB] and hence a mean density of 0.15[SUB]-0.06[/SUB][SUP]+0.15[/SUP] g cm[SUP]-3[/SUP]. The planet orbits an F9 main-sequence star in a 4.86-day period, that has a V magnitude of 15.0, solar metallicity, and an age of 4.5[SUB]-2.0[/SUB][SUP]+1.8[/SUP]-Gyr. CoRoT-26b orbits a slightly evolved G5 star of 9.06 ± 1.5-Gyr age in a 4.20-day period that hassolar metallicity and a V magnitude of 15.8. With a mass of 0.52 ± 0.05 M[SUB]Jup[/SUB], a radius of 1.26[SUB]-0.07[/SUB][SUP]+0.13[/SUP] R[SUB]Jup[/SUB], and a mean density of 0.28[SUB]-0.07[/SUB][SUP]+0.09[/SUP] g cm[SUP]-3[/SUP], it belongs to the low-mass hot-Jupiter population. Planetary evolution models allowed us to estimate a core mass of a few tens of Earth mass for the two planets with heavy-element mass fractions of 0.52[SUB]-0.15[/SUB][SUP]+0.08[/SUP] and 0.26[SUB]-0.08[/SUB][SUP]+0.05[/SUP], respectively, assuming that a small fraction of the incoming flux is dissipated at the center of the planet. In addition, these models indicate that CoRoT-26b is anomalously large compared with what standard models could account for, indicating that dissipation from stellar heating could cause this size. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany and Spain. Partly based on observations obtained at the European Southern Observatory at Paranal and La Silla, Chile in programs 083.C-0690(A), 184.C-0639. [less ▲]

Detailed reference viewed: 17 (0 ULg)
Full Text
Peer Reviewed
See detailXX. CoRoT-20b: A very high density, high eccentricity transiting giant planet
Deleuil, M.; Bonomo, A. S.; Ferraz-Mello, S. et al

in Astronomy and Astrophysics (2012), 538

We report the discovery by the CoRoT space mission of a new giant planet, CoRoT-20b. The planet has a mass of 4.24 +/- 0.23 MJ and a radius of 0.84 +/- 0.04 RJ. With a mean density of 8.87 +/- 1.10 g/cm^3 ... [more ▼]

We report the discovery by the CoRoT space mission of a new giant planet, CoRoT-20b. The planet has a mass of 4.24 +/- 0.23 MJ and a radius of 0.84 +/- 0.04 RJ. With a mean density of 8.87 +/- 1.10 g/cm^3, it is among the most compact planets known so far. Evolution models for the planet suggest a mass of heavy elements of the order of 800 ME if embedded in a central core, requiring a revision either of the planet formation models or of planet evolution and structure models. We note however that smaller amounts of heavy elements are expected from more realistic models in which they are mixed throughout the envelope. The planet orbits a G-type star with an orbital period of 9.24 days and an eccentricity of 0.56. The star's projected rotational velocity is vsini = 4.5 +/- 1.0 km/s, corresponding to a spin period of 11.5 +/- 3.1 days if its axis of rotation is perpendicular to the orbital plane. In the framework of Darwinian theories and neglecting stellar magnetic breaking, we calculate the tidal evolution of the system and show that CoRoT-20b is presently one of the very few Darwin-stable planets that is evolving towards a triple synchronous state with equality of the orbital, planetary and stellar spin periods. [less ▲]

Detailed reference viewed: 16 (5 ULg)