References of "Dalla, C"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailEstradiol rapidly activates male sexual behavior and affects brain monoamine levels in the quail brain
Cornil, Charlotte ULg; Dalla, C.; Papadopoulou-Daifoti, Z. et al

in Behavioural Brain Research (2006), 166(1), 110-123

Steroids are generally viewed as transcription factors binding to intracellular receptors and activating gene transcription. Rapid cellular effects mediated via non-genomic mechanisms have however been ... [more ▼]

Steroids are generally viewed as transcription factors binding to intracellular receptors and activating gene transcription. Rapid cellular effects mediated via non-genomic mechanisms have however been identified and one report showed that injections of estradiol rapidly stimulate chemoinvestigation and mounting behavior in castrated male rats. It is not known whether such effects take place in other species and what are the cellular underlying mechanisms. We show here that a single injection of estradiol (500 wg/kg) rapidly and transiently activates copulatory behavior in castrated male quail pre-treated with a dose of testosterone behaviorally ineffective by itself. The maximal behavioral effect was observed after 15 min. In a second experiment, the brain of all subjects was immediately collected after behavioral tests performed 15 min after injection. The preoptic area-hypothalamus (HPOA), hindbrain, telencephalon and cerebellum were isolated and monoamines measured by HPLC-ED. Estradiol increased levels of the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) and 5-HIAA/serotonin ratios in the telencephalon and hindbrain independently of whether animals had mated or not. Estradiol also affected these measures in HPOA and cerebellum but this effect was correlated with the level of sexual activity so that significant effects of the treatment only appeared when sexual activity was used as a covariate. Interactions between estradiol effects and sexual activity were also observed for dopamine in the HPOA and for serotonin in the hindbrain and cerebellum. Together, these data demonstrate that a single estradiol injection rapidly activates male sexual behavior in quail and that this behavioral effect is correlated with changes in monoaminergic activity. (c) 2005 Elsevier B.V. All rights reserved. [less ▲]

Detailed reference viewed: 22 (3 ULg)
Full Text
Peer Reviewed
See detailMale aromatase-knockout mice exhibit normal levels of activity, anxiety and "depressive-like" symptomatology
Dalla, C.; Antoniou, K.; Papadopoulou-Daifoti, Z. et al

in Behavioural Brain Research (2005), 163(2), 186-193

It is well known that estradiol derived from neural aromatization of testosterone plays a crucial role in the development of the male brain and the display of sexual behaviors in adulthood. It was ... [more ▼]

It is well known that estradiol derived from neural aromatization of testosterone plays a crucial role in the development of the male brain and the display of sexual behaviors in adulthood. It was recently found that male aromatase knockout mice (ArKO) deficient in estradiol due to a mutation in the aromatase gene have general deficits in coital behavior and are sexually less motivated. We wondered whether these behavioral deficits of ArKO males could be related to changes in activity, exploration, anxiety and "depressive-like" symptomatology. ArKO and wild type (WT) males were subjected to open field (OF), elevated plus maze (EPM), and forced swim tests (FST), after being exposed or not to chronic mild stress (CMS). CNIS was used to evaluate the impact of chronic stressful procedures and to unveil possible differences between genotypes. There was no effect of genotype on OF, EPM and FST behavioral parameters. WT and ArKO mice exposed to CMS or not exhibited the same behavioral profile during these three types of tests. However, all CMS-exposed mice (ArKO and WT) spent less time in the center of the EPM. Additionally, floating duration measured in the FST increased between two tests in both WT and ArKO mice, though that increase was less prominent in mice previously subjected to CNIS than in controls. Therefore, both ArKO and WT males displayed the same behavior and had the same response to CMS however CMS exposure slightly modified the behavior displayed by mice of both genotypes in the FST and EPM paradigms. These results show that ArKO males display normal levels of activity, exploration, anxiety and "depressive-like" symptomatology and thus their deficits in sexual behavior are specific in nature and do not result indirectly from other behavioral changes. (c) 2005 Published by Elsevier B.V. [less ▲]

Detailed reference viewed: 18 (0 ULg)
Full Text
Peer Reviewed
See detailRapid decreases in preoptic aromatase activity and brain monoamine concentrations after engaging in male sexual behavior
Cornil, Charlotte ULg; Dalla, C.; Papadopoulou-Daifoti, Z. et al

in Endocrinology (2005), 146(9), 3809-3820

In Japanese quail, as in rats, the expression of male sexual behavior over relatively long time periods (days to weeks) is dependent on the local production of estradiol in the preoptic area via the ... [more ▼]

In Japanese quail, as in rats, the expression of male sexual behavior over relatively long time periods (days to weeks) is dependent on the local production of estradiol in the preoptic area via the aromatization of testosterone. On a short-term basis (minutes to hours), central actions of dopamine as well as locally produced estrogens modulate behavioral expression. In rats, a view of and sexual interaction with a female increase dopamine release in the preoptic area. In quail, in vitro brain aromatase activity (AA) is rapidly modulated by calcium-dependent phosphorylations that are likely to occur in vivo as a result of changes in neurotransmitter activity. Furthermore, an acute estradiol injection rapidly stimulates copulation in quail, whereas a single injection of the aromatase inhibitor vorozole rapidly inhibits this behavior. We hypothesized that brain aromatase and dopaminergic activities are regulated in quail in association with the expression of male sexual behavior. Visual access as well as sexual interactions with a female produced a significant decrease in brain AA, which was maximal after 5 min. This expression of sexual behavior also resulted in a significant decrease in dopaminergic as well as serotonergic activity after 1 min, which returned to basal levels after 5 min. These results demonstrate for the first time that AA is rapidly modulated in vivo in parallel with changes in dopamine activity. Sexual interactions with the female decreased aromatase and dopamine activities. These data challenge established views about the causal relationships among dopamine, estrogen action, and male sexual behavior. [less ▲]

Detailed reference viewed: 12 (2 ULg)
Full Text
Peer Reviewed
See detailOestrogen-deficient female aromatase knockout (ArKO) mice exhibit 'depressive-like' symptomatology
Dalla, C.; Antoniou, K.; Papadopoulou-Daifoti, Z. et al

in European Journal of Neuroscience (2004), 20(1), 217-228

We recently found that female aromatase knockout (ArKO) mice that are deficient in oestradiol due to a targeted mutation in the aromatase gene show deficits in sexual behaviour that cannot be corrected by ... [more ▼]

We recently found that female aromatase knockout (ArKO) mice that are deficient in oestradiol due to a targeted mutation in the aromatase gene show deficits in sexual behaviour that cannot be corrected by adult treatment with oestrogens. We determined here whether these impairments are associated with changes in general levels of activity, anxiety or 'depressive-like' symptomatology due to chronic oestrogen deficiency. We also compared the neurochemical profile of ArKO and wild-type (WT) females, as oestrogens have been shown to modulate dopaminergic, serotonergic and noradrenergic brain activities. ArKO females did not differ from WT in spontaneous motor activity, exploration or anxiety. These findings are in line with the absence of major neurochemical alterations in hypothalamus, prefrontal cortex or striatum, which are involved in the expression of these behaviours. By contrast, ArKO females displayed decreased active behaviours, such as struggling and swimming, and increased passive behaviours, such as floating, in repeated sessions of the forced swim test, indicating that these females exhibit 'depressive-like' symptoms. Adult treatment with oestradiol did not reverse the behavioural deficits observed in the forced swim test, suggesting that they may be due to the absence of oestradiol during development. Accordingly, an increased serotonergic activity was observed in the hippocampus of ArKO females compared with WT, which was also not reversed by adult oestradiol treatment. The possible organizational role of oestradiol on the hippocampal serotonergic system and the 'depressive-like' profile of ArKO females provide new insights into the pathophysiology of depression and the increased vulnerability of women to depression. [less ▲]

Detailed reference viewed: 21 (0 ULg)
Full Text
Peer Reviewed
See detailEstrogen-deficient female but not male aromatase knockout (ArKO) mice exhibit "depressive-like" symptoms
Bakker, Julie ULg; Dalla, C.; Antoniou, K. et al

in Hormones & Behavior (2004, June), 46(1), 127

Detailed reference viewed: 12 (2 ULg)