References of "Croisier, Florence"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailChitosan-based biomaterials for tissue engineering
Croisier, Florence ULg; Jérôme, Christine ULg

in European Polymer Journal (2013), 49(4), 780-792

Derived from chitin, chitosan is a unique biopolymer that exhibits outstanding properties, beside biocompatibility and biodegradability. Most of these peculiar properties arise from the presence of ... [more ▼]

Derived from chitin, chitosan is a unique biopolymer that exhibits outstanding properties, beside biocompatibility and biodegradability. Most of these peculiar properties arise from the presence of primary amines along the chitosan backbone. As a consequence, this polysaccharide is a relevant candidate in the field of biomaterials, especially for tissue engineering. The current article highlights the preparation and properties of innovative chitosan-based biomaterials, with respect to their future applications. The use of chitosan in 3D-scaffolds – as gels and sponges – and in 2D-scaffolds – as films and fibers – is discussed, with a special focus on wound healing application. [less ▲]

Detailed reference viewed: 76 (16 ULg)
Full Text
Peer Reviewed
See detailMechanical testing of electrospun PCL fibers
Croisier, Florence ULg; Duwez, Anne-Sophie ULg; Jérôme, Christine ULg et al

in Acta Biomaterialia (2012), 8(1), 218-224

Poly(ε-caprolactone) (PCL) fibers ranging from 250 to 700 nm in diameter were produced by electrospinning a polymer tetrahydrofuran/N,N-dimethylformamide solution. The mechanical properties of the fibrous ... [more ▼]

Poly(ε-caprolactone) (PCL) fibers ranging from 250 to 700 nm in diameter were produced by electrospinning a polymer tetrahydrofuran/N,N-dimethylformamide solution. The mechanical properties of the fibrous scaffolds and individual fibers were measured by different methods. The Young’s moduli of the scaffolds were determined using macro-tensile testing equipment, whereas single fibers were mechanically tested using a nanoscale three-point bending method, based on atomic force microscopy and force spectroscopy analyses. The modulus obtained by tensile-testing eight different fiber scaffolds was 3.8 ± 0.8 MPa. Assuming that PCL fibers can be described by the bending model of isotropic materials, a Young’s modulus of 3.7 ± 0.7 GPa was determined for single fibers. The difference of three orders of magnitude observed in the moduli of fiber scaffolds vs. single fibers can be explained by the lacunar and random structure of the scaffolds. [less ▲]

Detailed reference viewed: 47 (18 ULg)
Full Text
Peer Reviewed
See detailCharged poly(D,L-lactide) nanofibers: towards customized surface properties
Croisier, Florence ULg; Aqil, Abdelhafid ULg; Malherbe, Cédric ULg et al

in Macromolecular Symposia (2011), 309/310(1), 20-27

Surface-charged nanofibers were prepared by electrospinning technique (ESP). For this purpose, a copolymer bearing carboxylic acid functions was added to a poly(D,L-lactide) solution just before ESP ... [more ▼]

Surface-charged nanofibers were prepared by electrospinning technique (ESP). For this purpose, a copolymer bearing carboxylic acid functions was added to a poly(D,L-lactide) solution just before ESP process. In a basic medium, negative charges were therefore revealed on fiber surface. By deposition of positively charged particles or polyelectrolytes, surface properties of the fibers could be tailor-made for a specific application. This versatile method can, for example, be applied to the preparation of new biomedical scaffolds. [less ▲]

Detailed reference viewed: 39 (16 ULg)
See detailChitosan-based nanofibers with multilayered structure for wound healing application
Croisier, Florence ULg; Detrembleur, Christophe ULg; Jérôme, Christine ULg

Poster (2011, November 21)

Chitosan is a natural polymer that intrinsically presents haemostatic, mucoadhesive, antimicrobial and immunostimulant properties. This polysaccharide has shown a great potential for biomedical ... [more ▼]

Chitosan is a natural polymer that intrinsically presents haemostatic, mucoadhesive, antimicrobial and immunostimulant properties. This polysaccharide has shown a great potential for biomedical applications, on account of its remarkable compatibility with physiological medium and its biodegradability. In this respect, nanometric fibers are highly interesting as their assembly mimics the skin extracellular matrix structure. Such nanofibrous materials can be prepared by electrospinning (ESP) and can be used as scaffolds, a.o. to form a temporary, artificial extracellular matrix. In the present study, electrospinning technique was combined with layer-by-layer deposition method (LBL) – a well-known method for surface coating, based on electrostatic interactions – in order to prepare multilayered chitosan-based nanofibers for wound healing application. [less ▲]

Detailed reference viewed: 40 (4 ULg)
Full Text
See detailPreparation of chitosan-based nanofibers with multilayered structure
Croisier, Florence ULg; Duwez, Anne-Sophie ULg; Dijkstra, P. J. et al

Conference (2011, May 12)

Detailed reference viewed: 32 (3 ULg)
See detailChitosan-based wound dressings produced by electrospinning
Croisier, Florence ULg; Sorlier, Pierre; Jérôme, Christine ULg

Poster (2011, April 29)

Detailed reference viewed: 27 (2 ULg)
See detailChitosan nanofiber membranes for tissue engineering - synthesis, characterization and properties
Toncheva, Natalia ULg; Aqil, Abdelhafid ULg; Croisier, Florence ULg et al

Poster (2010, November 29)

This poster was presented by Natalia Toncheva

Detailed reference viewed: 44 (3 ULg)
Full Text
See detailChitosan-based wound dressings produced by electrospinning
Croisier, Florence ULg; Sorlier, Pierre; Jérôme, Christine ULg

Poster (2010, September 07)

Detailed reference viewed: 20 (2 ULg)
Full Text
See detailContribution of "click chemistry" to the macromolecular engineering of aliphatic polyesters
Riva, Raphaël ULg; Schmeits, Stephanie ULg; Croisier, Florence ULg et al

Poster (2010, July 13)

In this work, click chemistry was sucessfully applied to the chemical modification of aliphatic polyesters with the purpose to tailor their physical properties. The developped strategy was then applied to ... [more ▼]

In this work, click chemistry was sucessfully applied to the chemical modification of aliphatic polyesters with the purpose to tailor their physical properties. The developped strategy was then applied to the synthesis of materials, such as smart partially degradable hydrogels or antibacterial polyesters. Last, the synthesis of amphiphilic star-shaped copolyester was investigated. [less ▲]

Detailed reference viewed: 55 (7 ULg)
Full Text
See detailStimuli-responsive triblock copolymer for biomedical applications
Sibret, Pierre ULg; Croisier, Florence ULg; Zhao, J. et al

Poster (2010, May 25)

Detailed reference viewed: 14 (2 ULg)
See detailAFM-based mechanical testing of electrospun PCL fibers
Croisier, Florence ULg; Duwez, Anne-Sophie ULg; Jérôme, Christine ULg et al

Poster (2009, December 14)

Poly(ε-caprolactone)(PCL forms a part of the aliphatic polyesters; the biodegradable and biocompatible character of these polymers makes them outstanding candidates for short-to medium-term biomedical ... [more ▼]

Poly(ε-caprolactone)(PCL forms a part of the aliphatic polyesters; the biodegradable and biocompatible character of these polymers makes them outstanding candidates for short-to medium-term biomedical applications, especially in the form of nanometric fibers,as their assembly mimics the extracellular matrix structure. However, a prerequisite to their application as nanofibrous biomaterial scaffolds is the investigation of their mechanical strength. In the present study, PCL fibers produced by electrospinning were individually tested using an AFM-based nano-scale three-point bending technique. [less ▲]

Detailed reference viewed: 87 (17 ULg)
Full Text
See detailFunctionlization and grafting of polylactide by click chemistry
Riva, Raphaël ULg; Croisier, Florence ULg; Jérôme, Christine ULg et al

Conference (2009, November 19)

Detailed reference viewed: 64 (14 ULg)
Full Text
See detailDevelopment of multilayered chitosan-based nanofibers
Croisier, Florence ULg; Aqil, Abdelhafid ULg; Detrembleur, Christophe ULg et al

Poster (2009, June 14)

By combining electrospinning and layer-by-layer deposition techniques, new porous material scaffolds of multilayered, chitosan-based nanofibers were produced. Layer-by-layer (LBL) is a well-known method ... [more ▼]

By combining electrospinning and layer-by-layer deposition techniques, new porous material scaffolds of multilayered, chitosan-based nanofibers were produced. Layer-by-layer (LBL) is a well-known method for surface coating, based on electrostatic interactions. It enables the controllable deposition of a variety of polyelectrolytes including synthetic and natural materials, with designable layer structure, defined layer thickness and size. Electrospinning (ESP) allows the fabrication of polymer fibers ranging from nanometers to a few microns in diameter, depending on the polymer characteristics (a.o. molecular weight, solution viscosity and conductivity) and processing conditions (electric potential, distance between syringe-capillary and collection plate, concentration, flow rate). Mats of nanofibers produced by ESP display a very large surface area-to-volume ratio and high porosity with very small pore size. The nanometric scale of electrospun fibers also proves a positive effect on cellular growth, as fiber mats mimic extracellular matrix structure. The association of these two techniques with the use of biocompatible and biodegradable polymers such as chitosan, gives outstanding prospects in the field of biomedical applications, especially for the preparation of wound dressings, artificial skin or tissue engineering scaffolds. In the present study, a charged copolymer, poly(methylmethacrylate-block-methacrylic acid), was added to a poly(ε-caprolactone) or poly(D,L-lactide) solution before electrospinning in order to prepare surface charged nanofibers. Oppositely charged polyelectrolytes – chitosan and poly(styrene sulfonate) or hyaluronic acid – were then alternately deposited on these aliphatic polyester fiber “cores” using LBL method. The aliphatic polyester core was also removed selectively to confirm the growth of a multilayered shell, obtaining hollow fibers. [less ▲]

Detailed reference viewed: 60 (31 ULg)
Full Text
See detailDevelopment of multilayered chitosan-based nanofibers for tissue engineering
Croisier, Florence ULg; Aqil, Abdelhafid ULg; Detrembleur, Christophe ULg et al

Conference (2009, June 13)

By combining electrospinning and layer-by-layer deposition techniques, new porous material scaffolds of multilayered, chitosan-based nanofibers were produced. Layer-by-layer (LBL) is a well-known method ... [more ▼]

By combining electrospinning and layer-by-layer deposition techniques, new porous material scaffolds of multilayered, chitosan-based nanofibers were produced. Layer-by-layer (LBL) is a well-known method for surface coating, based on electrostatic interactions. It enables the controllable deposition of a variety of polyelectrolytes including synthetic and natural materials, with designable layer structure, defined layer thickness and size. Electrospinning (ESP) allows the fabrication of polymer fibers ranging from nanometers to a few microns in diameter, depending on the polymer characteristics (a.o. molecular weight, solution viscosity and conductivity) and processing conditions (electric potential, distance between syringe-capillary and collection plate, concentration, flow rate). Mats of nanofibers produced by ESP display a very large surface area-to-volume ratio and high porosity with very small pore size. The nanometric scale of electrospun fibers also proves a positive effect on cellular growth, as fiber mats mimic extracellular matrix structure. The association of these two techniques with the use of biocompatible and biodegradable polymers such as chitosan, gives outstanding prospects in the field of biomedical applications, especially for the preparation of wound dressings, artificial skin or tissue engineering scaffolds. In the present study, a charged copolymer, poly(methylmethacrylate-block-methacrylic acid), was added to a poly(ε-caprolactone) or poly(D,L-lactide) solution before electrospinning in order to prepare surface charged nanofibers. Oppositely charged polyelectrolytes – chitosan and poly(styrene sulfonate) or hyaluronic acid – were then alternately deposited on these aliphatic polyester fiber “cores” using LBL method. The aliphatic polyester core was also removed selectively to confirm the growth of a multilayered shell, obtaining hollow fibers. [less ▲]

Detailed reference viewed: 61 (17 ULg)