References of "Creppe, Catherine"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailElongator controls the migration and differentiation of cortical neurons through acetylation of a tubulin
Creppe, Catherine ULg; Malinouskaya, Lina ULg; Volvert, Marie-Laure ULg et al

in Cell (2009), 136

The generation of cortical projection neurons relies on the coordination of radial migration with branching. Here we report that the multi-subunit histone acetyltransferase Elongator complex, which ... [more ▼]

The generation of cortical projection neurons relies on the coordination of radial migration with branching. Here we report that the multi-subunit histone acetyltransferase Elongator complex, which contributes to transcript elongation, also regulates the maturation of projection neurons. Indeed, silencing of its scaffold (Elp1) or catalytic subunit (Elp3) cell-autonomously delays the migration and impairs the branching of projection neurons. Strikingly, neurons defective in Elongator show reduced levels of acetylated alpha tubulin. A direct reduction of alpha tubulin acetylation leads to comparable defects in cortical neurons and suggests that alpha tubulin is a target of Elp3. This is further supported by the demonstration that Elp3 promotes acetylation and counteracts HDAC6-mediated deacetylation of this substrate in vitro. Our results uncover alpha tubulin as a target of the Elongator complex and suggest that a tight regulation of its acetylation underlies the maturation of cortical projection neurons. [less ▲]

Detailed reference viewed: 260 (97 ULg)
Full Text
Peer Reviewed
See detailDeregulated expression of pro-survival and pro-apoptotic p53-dependent genes upon Elongator deficiency in colon cancer cells.
Cornez, Isabelle ULg; Creppe, Catherine ULg; Gillard, Magali ULg et al

in Biochemical Pharmacology (2008), 75

Elongator, a multi-subunit complex assembled by the IkappaB kinase-associated protein (IKAP)/hELP1 scaffold protein is involved in transcriptional elongation in the nucleus as well as in tRNA ... [more ▼]

Elongator, a multi-subunit complex assembled by the IkappaB kinase-associated protein (IKAP)/hELP1 scaffold protein is involved in transcriptional elongation in the nucleus as well as in tRNA modifications in the cytoplasm. However, the biological processes regulated by Elongator in human cells only start to be elucidated. Here we demonstrate that IKAP/hELP1 depleted colon cancer-derived cells show enhanced basal expression of some but not all pro-apoptotic p53-dependent genes such as BAX. Moreover, Elongator deficiency causes increased basal and daunomycin-induced expression of the pro-survival serum- and glucocorticoid-induced protein kinase (SGK) gene through a p53-dependent pathway. Thus, our data collectively demonstrate that Elongator deficiency triggers the activation of p53-dependent genes harbouring opposite functions with respect to apoptosis. [less ▲]

Detailed reference viewed: 59 (19 ULg)
Full Text
Peer Reviewed
See detailTranscription impairment and cell migration defects in elongator-depleted cells: Implication for familial dysautonomia
Close, Pierre ULg; Hawkes, Nicola; Cornez, Isabelle ULg et al

in Molecular Cell (2006), 22(4), 521-531

Mutations in IKBKAP, encoding a subunit of Elongator, cause familial dysautonomia (FD), a severe neuro-developmental disease with complex clinical characteristics. Elongator was previously linked not only ... [more ▼]

Mutations in IKBKAP, encoding a subunit of Elongator, cause familial dysautonomia (FD), a severe neuro-developmental disease with complex clinical characteristics. Elongator was previously linked not only with transcriptional elongation and histone acetylation but also with other cellular processes. Here, we used RNA interference (RNAi) and fibroblasts from FD patients to identify Elongator target genes and study the role of Elongator in transcription. Strikingly, whereas Elongator is recruited to both target and nontarget genes, only target genes display histone H3 hypoacetylation and progressively lower RNAPII density through the coding region in FD cells. Interestingly, several target genes encode proteins implicated in cell motility. Indeed, characterization of IKAP/hELP1 RNAi cells, FD fibroblasts, and neuronal cell-derived cells uncovered defects in this cellular function upon Elongator depletion. These results indicate that defects in Elongator function affect transcriptional elongation of several genes and that the ensuing cell motility deficiencies may underlie the neuropathology of FD patients. [less ▲]

Detailed reference viewed: 155 (27 ULg)