References of "Cornu, Guillaume"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailVegetation structure and greenness in Central Africa from Modis multi-temporal data
Gond, Valéry; Fayolle, Adeline ULg; Pennec, Alexandre et al

in Philosophical transactions of the Royal Society (2013), (368),

African forests within the Congo Basin are generally mapped at a regional scale as broad-leaved evergreen forests, with the main distinction being between terra-firme and swamp forest types. At the same ... [more ▼]

African forests within the Congo Basin are generally mapped at a regional scale as broad-leaved evergreen forests, with the main distinction being between terra-firme and swamp forest types. At the same time, commercial forest inventories, as well as national maps, have highlighted a strong spatial heterogeneity of forest types. A detailed vegetation map generated using consistent methods is needed to inform decision makers about spatial forest organization and their relationships with environmental drivers in the context of global change. We propose a multi-temporal remotely sensed data approach to characterize vegetation types using vegetation index annual profiles. The classifications identified 22 vegetation types (six savannas, two swamp forests, 14 forest types) improving existing vegetation maps. Among forest types, we showed strong variations in stand structure and deciduousness, identifying (i)two blocks of dense evergreen forests located in the western part of the study area and in the central part on sandy soil; (ii) semi-deciduous forests are located in the Sangha River interval which has experienced past fragmentation and human activities. For all vegetation types enhanced vegetation index profiles were highly seasonal and strongly correlated to rainfall and to a lesser extent, to light regimes. These results are of importance to predict spatial variations of carbon stocks and fluxes, because evergreen/deciduous forests (i) have contrasted annual dynamics of photosynthetic activity and foliar water content and (ii) differ in community dynamics and ecosystem processes. [less ▲]

Detailed reference viewed: 18 (9 ULg)
Full Text
Peer Reviewed
See detailGeological Substrates Shape Tree Species and Trait Distributions in African Moist Forests
Fayolle, Adeline ULg; Engelbrecht, Bettina; Freycon, Vincent et al

in PLoS ONE (2012), 7(8), 1-10

Background: Understanding the factors that shape the distribution of tropical tree species at large scales is a central issue in ecology, conservation and forest management. The aims of this study were to ... [more ▼]

Background: Understanding the factors that shape the distribution of tropical tree species at large scales is a central issue in ecology, conservation and forest management. The aims of this study were to (i) assess the importance of environmental factors relative to historical factors for tree species distributions in the semi-evergreen forests of the northern Congo basin; and to (ii) identify potential mechanisms explaining distribution patterns through a trait-based approach. Methodology/Principal Findings: We analyzed the distribution patterns of 31 common tree species in an area of more than 700,000 km² spanning the borders of Cameroon, the Central African Republic, and the Republic of Congo using forest inventory data from 56,445 0.5-ha plots. Spatial variation of environmental (climate, topography and geology) and historical factors (human disturbance) were quantified from maps and satellite records. Four key functional traits (leaf phenology, shade tolerance, wood density, and maximum growth rate) were extracted from the literature. The geological substrate was of major importance for the distribution of the focal species, while climate and past human disturbances had a significant but lesser impact. Species distribution patterns were significantly related to functional traits. Species associated with sandy soils typical of sandstone and alluvium were characterized by slow growth rates, shade tolerance, evergreen leaves, and high wood density, traits allowing persistence on resource-poor soils. In contrast, fast-growing pioneer species rarely occurred on sandy soils, except for Lophira alata. Conclusions/Significance: The results indicate strong environmental filtering due to differential soil resource availability across geological substrates. Additionally, long-term human disturbances in resource-rich areas may have accentuated the observed patterns of species and trait distributions. Trait differences across geological substrates imply pronounced differences in population and ecosystem processes, and call for different conservation and management strategies. [less ▲]

Detailed reference viewed: 61 (24 ULg)
Full Text
Peer Reviewed
See detailEnvironmental filtering of dense-wooded species controls above-ground biomass stored in African moist forests
Gourlet-Fleury, Sylvie; Rossi, Vivien; Réjou-Méchain, Maxime et al

in Journal of Ecology (2011), 99(4), 981-990

1. Regional above-ground biomass estimates for tropical moist forests remain highly inaccurate mostly because they are based on extrapolations from a few plots scattered across a limited range of soils ... [more ▼]

1. Regional above-ground biomass estimates for tropical moist forests remain highly inaccurate mostly because they are based on extrapolations from a few plots scattered across a limited range of soils and other environmental conditions. When such conditions impact biomass, the estimation is biased. The effect of soil types on biomass has especially yielded controversial results. 2. We investigated the relationship between above-ground biomass and soil type in undisturbed moist forests in the Central African Republic. We tested the effects of soil texture, as a surrogate for soil resources availability and physical constraints (soil depth and hydromorphy) on biomass. Forest inventory data were collected for trees ≥20 cm stem diameter in 2754 0.5 ha plots scattered over 4888 km². The plots contained 224 taxons, of which 209 were identified to species. Soil types were characterized from a 1:1 000 000 scale soil map. Species-specific values for wood density were extracted from the CIRAD’s data base of wood technological properties. 3. We found that basal area and biomass differ in their responses to soil type, ranging from 17.8 m² ha-1 (217.5 t ha-1) to 22.3 m² ha-1 (273.3 t ha-1). While shallow and hydromorphic soils support forests with both low stem basal area and low biomass, forests on deep resource-poor soils are typically low in basal area but as high in biomass as forests on deep resource-rich soils. We demonstrated that the environmental filtering of slow growing dense-wooded species on resource-poor soils compensates for the low basal area, and we discuss whether this filtering effect is due to low fertility or to low water reserve. 4. Synthesis. We showed that soil physical conditions constrained the amount of biomass stored in tropical moist forests. Contrary to previous reports, our results suggest that biomass is similar on resource-poor and resource-rich soils. This finding highlights both the importance of taking into account soil characteristics and species wood density when trying to predict regional patterns of biomass. Our findings have implications for the evaluation of biomass stocks in tropical forests, in the context of the international negotiations on climate change. [less ▲]

Detailed reference viewed: 21 (8 ULg)