References of "Cornez, Isabelle"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMice with Disrupted Type I Protein Kinase A Anchoring in T Cells Resist Retrovirus-Induced Immunodeficiency
Mosenden, Randi; Singh, Pratibha; Cornez, Isabelle et al

in Journal of Immunology (2011), 186(9), 5119-30

Type I protein kinase A (PKA) is targeted to the TCR-proximal signaling machinery by the A-kinase anchoring protein ezrin and negatively regulates T cell immune function through activation of the C ... [more ▼]

Type I protein kinase A (PKA) is targeted to the TCR-proximal signaling machinery by the A-kinase anchoring protein ezrin and negatively regulates T cell immune function through activation of the C-terminal Src kinase. RI anchoring disruptor (RIAD) is a high-affinity competitor peptide that specifically displaces type I PKA from A-kinase anchoring proteins. In this study, we disrupted type I PKA anchoring in peripheral T cells by expressing a soluble ezrin fragment with RIAD inserted in place of the endogenous A-kinase binding domain under the lck distal promoter in mice. Peripheral T cells from mice expressing the RIAD fusion protein (RIAD-transgenic mice) displayed augmented basal and TCR-activated signaling, enhanced T cell responsiveness assessed as IL-2 secretion, and reduced sensitivity to PGE2- and cAMP-mediated inhibition of T cell function. Hyperactivation of the cAMP–type I PKA pathway is involved in the T cell dysfunction of HIV infection, as well as murine AIDS, a disease model induced by infection of C57BL/6 mice with LP-BM5, a mixture of attenuated murine leukemia viruses. LP-BM5–infected RIADtransgenic mice resist progression of murine AIDS and have improved viral control. This underscores the cAMP–type I PKA pathway in T cells as a putative target for therapeutic intervention in immunodeficiency diseases. [less ▲]

Detailed reference viewed: 23 (6 ULg)
Full Text
Peer Reviewed
See detailElongator controls the migration and differentiation of cortical neurons through acetylation of a tubulin
Creppe, Catherine ULg; Malinouskaya, Lina ULg; Volvert, Marie-Laure ULg et al

in Cell (2009), 136

The generation of cortical projection neurons relies on the coordination of radial migration with branching. Here we report that the multi-subunit histone acetyltransferase Elongator complex, which ... [more ▼]

The generation of cortical projection neurons relies on the coordination of radial migration with branching. Here we report that the multi-subunit histone acetyltransferase Elongator complex, which contributes to transcript elongation, also regulates the maturation of projection neurons. Indeed, silencing of its scaffold (Elp1) or catalytic subunit (Elp3) cell-autonomously delays the migration and impairs the branching of projection neurons. Strikingly, neurons defective in Elongator show reduced levels of acetylated alpha tubulin. A direct reduction of alpha tubulin acetylation leads to comparable defects in cortical neurons and suggests that alpha tubulin is a target of Elp3. This is further supported by the demonstration that Elp3 promotes acetylation and counteracts HDAC6-mediated deacetylation of this substrate in vitro. Our results uncover alpha tubulin as a target of the Elongator complex and suggest that a tight regulation of its acetylation underlies the maturation of cortical projection neurons. [less ▲]

Detailed reference viewed: 266 (100 ULg)