References of "Cornet, Luc"
     in
Bookmark and Share    
Full Text
See detailThe BCCM/ULC collection to conserve the biodiversity and study the secondary metabolites of Antarctic cyanobacteria
Lara, Yannick ULiege; Durieu, Benoit ULiege; Renard, Marine et al

in Van de Putte, Anton (Ed.) Book of abstracts: XIIth SCAR Biology Symposium, Leuven, Belgium, 10-14 July 2017. (2017, June)

The BCCM/ULC public collection is funded by the Belgian Science Policy Office since 2011. A Quality Management System ensures that the services of deposits (both public and safe) and distribution are well ... [more ▼]

The BCCM/ULC public collection is funded by the Belgian Science Policy Office since 2011. A Quality Management System ensures that the services of deposits (both public and safe) and distribution are well documented and efficient for the clients’ satisfaction. It has obtained the ISO 9001 certification for deposition and distribution of strains, as part of the multi-site certification for the BCCM consortium. This collection aims to gather a representative portion of the Antarctic cyanobacterial diversity with different ecological origins (limnetic mats, soil crusts, cryoconites, endoliths…) and make it available for researchers to study the taxonomy, evolution, adaptations to harsh environmental conditions, pigments, and genomic make-up. It presently includes 216 cyanobacterial strains, of which 119 are of Antarctic origin (catalogue: http://bccm.belspo.be/catalogues/ulc-catalogue-search). In addition, cyanobacteria are known to produce a wide range of secondary metabolites (e.g. alkaloids, cyclic and linear peptides, polyketides) with bioactive potential. Genome sequencing of 11 strains has been started to enable genome mining for biosynthetic clusters. Pair-read data from illumina MiSeq runs were obtained and submitted to a bioinformatic pipeline dedicated to the assembly of genomes and search of sequences involved in the biosynthesis of secondary metabolites. Gene cluster prediction analysis allowed to characterize 20 clusters of NRPS, PKS and hybrid NRPS-PKS from 2 to 66kb. Surprisingly, none of the characterized operons had previously been described in the literature. [less ▲]

Detailed reference viewed: 46 (4 ULiège)
Full Text
Peer Reviewed
See detailDraft Genome of the Axenic Strain Phormidesmis priestleyi ULC007, a Cyanobacterium Isolated from Lake Bruehwiler (Larsemann Hills, Antarctica)
Lara, Yannick ULiege; Durieu, Benoit ULiege; Cornet, Luc ULiege et al

in Genome Announcements (2017)

Phormidesmis priestleyi ULC007 is an Antarctic freshwater cyanobacte- rium. Its draft genome is 5,684,389 bp long. It contains a total of 5,604 protein- encoding genes, of which 22.2% have no clear ... [more ▼]

Phormidesmis priestleyi ULC007 is an Antarctic freshwater cyanobacte- rium. Its draft genome is 5,684,389 bp long. It contains a total of 5,604 protein- encoding genes, of which 22.2% have no clear homologues in known genomes. To date, this draft genome is the first one ever determined for an axenic cyanobacterium from Antarctica. [less ▲]

Detailed reference viewed: 56 (10 ULiège)
See detailThe BCCM/ULC collection to conserve the biodiversity and study the secondary metabolites of Polar cyanobacteria
Lara, Yannick ULiege; Durieu, Benoit ULiege; Renard, Marine ULiege et al

Poster (2016, November 16)

In the Polar Regions, Cyanobacteria are the key primary producers and main drivers of the food webs in a wide range of aquatic to terrestrial habitats. For example, they build benthic microbial mats in ... [more ▼]

In the Polar Regions, Cyanobacteria are the key primary producers and main drivers of the food webs in a wide range of aquatic to terrestrial habitats. For example, they build benthic microbial mats in lakes and soil crusts. Their success in these harsh cold conditions can probably be explained by particular adaptations to survive freeze/thaw cycles, seasonally contrasted light intensities, high UV radiations, dessication and other environmental stresses. The BCCM/ULC public collection is funded by the Belgian Science Policy Office since 2011. It has obtained the ISO9001 certification for deposition and distribution of strains, as part of the multi-site certification for the BCCM consortium. This collection aims to gather a representative portion of the polar cyanobacterial diversity with different ecological origins (limnetic mats, soil crusts, cryoconites, endoliths,….) and make it available for researchers to study the taxonomy, evolution, adaptations to harsh environmental conditions, pigments, and genomic make-up. It presently includes 226 cyanobacterial strains, of which 119 are of Antarctic origin (catalogue: http://bccm.belspo.be/catalogues/ulc-catalogue-search). As shown by morphological identification, the strains belong to five orders (Synechococcales, Oscillatoriales, Pleurocapsales, Chroococcidiopsidales and Nostocales). The 16S rRNA and ITS sequences of the strains are being characterized. The first 85 Antarctic strains already studied are distributed into 25 Operational Taxonomic Units (OTUs = groups of sequences with > 97,5% 16S rRNA similarity), and thus, represent a quite large diversity. Moreover, strains identified as members of the genera Leptolyngbya or Phormidium appear in several lineages. This supports the idea that there is a need to revise the taxonomy of these polyphyletic genera with a simple filamentous morphology. To better understand the functioning, metabolism and adaptative strategies of cyanobacteria in the extreme Antarctic environment, the genome sequencing of 11 strains has been started. Pair-read data from illumina MiSeq runs were obtained and submitted to a bioinformatic pipeline dedicated to the assembly of genomes and search of sequences involved in the biosynthesis of secondary metabolites. Gene cluster prediction analysis allowed to characterize 20 clusters of NRPS, PKS and hybrid NRPS-PKS from 2 to 66kb. Surprisingly, none of the characterized operons had previously been described in the literature. [less ▲]

Detailed reference viewed: 59 (6 ULiège)
See detailThe BCCM/ULC collection to conserve the biodiversity and explore the applied potential of Polar cyanobacteria
Becker, Pierre; SZTERNFELD, P; ANDJELKOVIC, M et al

Poster (2016, October 28)

In the Polar Regions, Cyanobacteria represent key primary producers and are the main drivers of the food webs in a wide range of aquatic to terrestrial habitats. For example, they build benthic microbial ... [more ▼]

In the Polar Regions, Cyanobacteria represent key primary producers and are the main drivers of the food webs in a wide range of aquatic to terrestrial habitats. For example, they build benthic microbial mats in lakes and soil crusts in terrestrial biotopes. They may present interesting features to survive freeze/thaw cycles, seasonally contrasted light intensities, high UV radiations, dessication and other stresses. The BCCM/ULC public collection funded by the Belgian Science Policy Office since 2011 aims to gather a representative portion of the polar cyanobacterial diversity with different ecological origins (limnetic mats, soil crusts, cryoconites, endoliths…). It makes it available for researchers to study the taxonomy, evolution, adaptations to harsh environmental conditions, and genomic make-up. It presently includes 226 cyanobacterial strains, with 119 being of Antarctic origin (catalogue: http://bccm.belspo.be/catalogues/ulc-catalogue-search). An ISO 9001 certificate was obtained for the public deposition and distribution of strains, as part of the multi-site certification for the BCCM consortium. The morphological identification shows that the strains belong to the orders Synechococcales, Oscillatoriales, Pleurocapsales, Chroococcidiopsidales and Nostocales. The 16S rRNA and ITS sequences of the strains are being characterized. Our results show that the Antarctic strains are positioned into 25 OTUs (sequences with > 97,5% 16S rRNA similarity), and thus, represent a quite large diversity. In addition, cyanobacteria are known to produce a wide range of secondary metabolites (e.g. alkaloids, cyclic and linear peptides, polyketides) with bioactive potential. Among these bioactive metabolites, some display antibiotic, anticancer or antifungal effects. In collaboration with the BCCM/IHEM collection of biomedical fungi, a screening of cyanobacterial strains from BCCM/ULC was performed in order to discover potential new antifungal drugs. The analysis of a first set of methanol extracts from 15 different strains put in evidence the antifungal activity of a Phormidium priestleyi isolate. The latter remains active up to 0.5% (v/v) of fungal culture and was able to inhibit the growth of various fungal species among Candida, Cryptococcus, Aspergillus, and Penicillium. The raw extract was subjected to HPLC and a fraction containing the active molecule was obtained. This molecule appeared to be a thermostable hydrophobic compound. Moreover, in vitro toxicological analyses suggest that the compound has a general cytotoxic effect that could be inhibited by the mammalian metabolism. Further analyses are needed to identify the molecule and to determine if it could be a candidate for a new antifungal drug. In summary, the BCCM/ULC public collection serves as a Biological Resource Centre to conserve ex situ and document the biodiversity of polar cyanobacteria, as well as a repository for discovery of novel bioactive compounds. [less ▲]

Detailed reference viewed: 39 (4 ULiège)
See detailThe BCCM/ULC collection to conserve and study the biodiversity of Polar cyanobacteria
Wilmotte, Annick ULiege; Renard, Marine ULiege; Lara, Yannick ULiege et al

Poster (2016, September)

The BCCM/ULC public collection of Cyanobacteria has been funded since 2011 by the Belgian Science Policy Office. BCCM/ULC is currently holding 226 cyanobacterial strains, with 119 being of Antarctic ... [more ▼]

The BCCM/ULC public collection of Cyanobacteria has been funded since 2011 by the Belgian Science Policy Office. BCCM/ULC is currently holding 226 cyanobacterial strains, with 119 being of Antarctic origin (including 3 from the sub-Antarctic). The cyanobacteria constitute the bacterial phylum with the largest morphological diversity and their taxonomy is still a work in progress. In Polar Regions, Cyanobacteria represent key primary producers and are important drivers of the food webs in a wide range of aquatic to terrestrial habitats. For example, they build extensive benthic microbial mats in lakes and soil crusts in terrestrial biotopes. They have adapted to their environment, and may present interesting features to survive freeze/thaw cycles, seasonally contrasted light intensities, high UV radiations, dessication and other stresses. In this poster, we present the results of the 16S rRNA phylogenetic analysis for 76 Antarctic strains. This allows us to illustrate the diversity present in the collection, to detect lineages for which no genome has yet been sequenced, and to pinpoint taxonomic problems that should be addressed in a more comprehensive study. [less ▲]

Detailed reference viewed: 28 (4 ULiège)
See detailThe BCCM/ULC collection: a Biological Ressource Center to give access to the Antarctic cyanobacterial diversity
Wilmotte, Annick ULiege; Renard, Marine ULiege; Lara, Yannick ULiege et al

Poster (2016, August)

On the Antarctic continent, Cyanobacteria represent the key primary producers and the main drivers of the food webs in a wide range of aquatic to terrestrial habitats. For example, they build benthic ... [more ▼]

On the Antarctic continent, Cyanobacteria represent the key primary producers and the main drivers of the food webs in a wide range of aquatic to terrestrial habitats. For example, they build benthic microbial mats in lakes and soil crusts in terrestrial biotopes. They may present interesting features to survive freeze/thaw cycles, sea-sonally contrasted light intensities, high UV radiations, dessication and other stresses. The BCCM/ULC public collection funded by the Belgian Science Policy Office since 2011 aims to gather a representative portion of the polar cyanobacterial diversity with different ecological origins (limnetic microbial mats, soil crusts, cryoconites, endoliths, etc.). It makes it available for researchers to study the taxonomy, evolu-tion, adaptations to harsh environmental conditions, and genomic make-up. It pres-ently includes 226 cyanobacterial strains, with 119 being of Antarctic origin (cata-logue: http://bccm.belspo.be/catalogues/ulc-catalogue-search). The morphological identification shows that the strains belong to the orders Synechococcales, Oscillatoriales, Pleurocapsales, Chroococcidiopsidales and Nostocales. We present here the molecular datasets showing the diversity of the BCCM/ULC strains, studied on the basis of the 16S rRNA gene. A selection of strains was also characterized by sequencing of rpoC1, recA, and gyrA genes after amplification with newly designed primers. Our results mainly show that 25 OTUs included strains of Antarctic origin. Moreo-ver, strains identified as members of the genera Leptolyngbya or Phormidium ap-pear in several lineages. This supports the need to revise these polyphyletic genera with a simple filamentous morphology. A certain divergence of some Antarctic strains from related strains isolated from other regions can also be observed. It suggests that a portion of the Antarctic cyanobacterial flora may have evolved in-dependently from the cyanobacteria in other continents. [less ▲]

Detailed reference viewed: 22 (1 ULiège)
Full Text
Peer Reviewed
See detailPLANET TOPERS: Planets, Tracing the Transfer, Origin, Preservation, and Evolution of their ReservoirS
Dehant, Véronique ULiege; Kabamba Baludikay, Blaise ULiege; Beghin, Jérémie ULiege et al

in Origins of Life & Evolution of the Biosphere (2016), DOI 10.1007/s11084-016-9488

Detailed reference viewed: 63 (18 ULiège)
See detailThe BCCM/ULC culture collection to conserve, document and explore the polar cyanobacterial diversity
Wilmotte, Annick ULiege; Renard, Marine ULiege; Kleinteich, Julia et al

Poster (2015, September 07)

In Polar Regions, Cyanobacteria represent key primary producers and are the main drivers of the food webs in a wide range of aquatic to terrestrial habitats. For example, they form benthic microbial mats ... [more ▼]

In Polar Regions, Cyanobacteria represent key primary producers and are the main drivers of the food webs in a wide range of aquatic to terrestrial habitats. For example, they form benthic microbial mats in lakes and soil crusts in terrestrial biotopes. They have adapted to their environment, and may present interesting features to survive freeze/thaw cycles, seasonally contrasted light intensities, high UV radiations, dessication and other environmental stresses. The BCCM/ULC public collection funded by the Belgian Science Policy Office since 2011 aims to gather a representative portion of the polar cyanobacterial diversity with different ecological origins (limnetic microbial mats, soil crusts, cryoconites, endoliths, etc.). The collection is available for researchers to study the taxonomy, evolution, adaptations to extreme environmental conditions, and genomic make-up. It presently includes 200 cyanobacterial strains, with 123 being of polar origin (catalogue: http://bccm.belspo.be/catalogues/ulc-catalogue-search). The morphological identification shows that the strains belong to the orders Synechococcales, Oscillatoriales, Pleurocapsales, Chroococcidiopsidales and Nostocales. The large diversity is also supported by the phylogenetic analyses based on the 16S rRNA sequences. This broad distribution makes the BCCM/ULC collection particularly interesting for phylogenomic studies. To this end, the sequencing of the complete genome of 16 selected strains is currently under way. In addition, cyanobacteria produce a wide range of secondary metabolites (e.g. alkaloides, cyclic and linear peptides, polyketides) with different bioactive potential (e.g. antibiotic, antiviral, anticancer, cytotoxic, genotoxic). Bioassays have shown antifungal activities of the cell extracts from strains Plectolyngbya hodgsonii ULC009 and Phormidium priestleyi ULC026. The potential of the polar strains to produce cyanotoxins and other secondary metabolites is currently being studied by ELISA, LC-MS and the detection of genes involved in their production. Due to the geographic isolation and the strong environmental stressors of the habitat, the exploration of these metabolites in Antarctic cyanobacterial strains seems promising for biotechnology or biomedical applications (Biondi et al. 2008). In summary, the BCCM/ULC public collection could serve as a Biological Resource Centre (OECD 2001) to conserve and document the biodiversity of polar cyanobacteria, as well as a repository for discovery of novel bioactive compounds. REFERENCES Biondi, N., Tredici, M., Taton, A., Wilmotte, A., Hodgson, D., Losi, D., & Marinelli, F. (2008) : Cyanobacteria from benthic mats of Antarctic lakes as a source of new bioactivities. Journal of Applied Microbiology, 105(1) : 105- 115 OECD (2001) Biological Resource Centres : Underpinning the Future of Life Sciences and Biotechnology. http://www.oecd.org/science/biotech/2487422.pdf [less ▲]

Detailed reference viewed: 40 (4 ULiège)
Full Text
See detailGenome sequencing of an endemic filamentous Antarctic cyanobacterium
Lara, Yannick ULiege; Verlaine, Olivier ULiege; Kleinteich, Julia et al

Poster (2015, August 03)

The strain Phormidium priestleyi ULC007 was isolated from a benthic mat located in a shallow freshwater pond in the Larsemann Hills (69°S), Western Antarctica. This strain belongs to a cyanobacterial ... [more ▼]

The strain Phormidium priestleyi ULC007 was isolated from a benthic mat located in a shallow freshwater pond in the Larsemann Hills (69°S), Western Antarctica. This strain belongs to a cyanobacterial cluster that appeared as potentially endemic (Taton et al. 2006). After obtaining an axenic isolate, we sequenced the genome of this strain in the frame of the BELSPO CCAMBIO project, in order to better understand the functioning, metabolism and adaptative strategies of cyanobacteria to the extreme Antarctic environment. [less ▲]

Detailed reference viewed: 69 (7 ULiège)
Full Text
See detailThe BCCM/ULC collection : a Biological Ressource Center for polar cyanobacteria
Wilmotte, Annick ULiege; Renard, Marine ULiege; Lara, Yannick ULiege et al

Poster (2015, August 03)

In this study, during the 2013 MicroFun expedition, we sampled 72 locations around Svalbard including diverse biotopes such as glacial forefields, tundra soils, hot springs, soil crusts, microbial mats ... [more ▼]

In this study, during the 2013 MicroFun expedition, we sampled 72 locations around Svalbard including diverse biotopes such as glacial forefields, tundra soils, hot springs, soil crusts, microbial mats, wet walls, cryoconites, plankton and periphyton, in order to (1) assess the biodiversity of cyanobacteria around Svalbard, (2) verify the existence of biogeographical trends around the archipelago, and (3) compare these data with other polar (cold) areas, especially Antarctica. We used a pyrosequencing approach targeting cyanobacteria-specific 16S rRNA gene sequences to deeply study the cyanobacterial communities. [less ▲]

Detailed reference viewed: 30 (1 ULiège)
See detailA Phylogenomic analysis of the origin of plastids
Cornet, Luc ULiege; Javaux, Emmanuelle ULiege; Wilmotte, Annick ULiege et al

Conference (2014, June 24)

Cyanobacteria are a morphologically diverse phylum, with their first occurrence dating from the Precambrian. Oxygenic photosynthesis appeared in this group during the same geological period. Several ... [more ▼]

Cyanobacteria are a morphologically diverse phylum, with their first occurrence dating from the Precambrian. Oxygenic photosynthesis appeared in this group during the same geological period. Several publications have established, without any doubt, that plastids (both primary and complex) form a monophyletic ensemble emerging from Cyanobacteria. However, the exact position of plastids within Cyanobacteria is still uncertain, with several recent papers leading to very different hypotheses. Here we present a phylogenomic analysis of the origin of plastids. Our study takes advantage of all the available genomes and thus represents the best taxonomic sampling seen so far: 140 genomes of Cyanobacteria, 101 genomes of plastids and 27 outgroups taken in Melainabacteria and Chloroflexi. It results in an analysis using state-of-the-art methods (e.g., orthology assessment using USEARCH and OrthoMCL, phylogenetic inference using CAT and CAT-GTR models) based on more than 160 protein alignments totalizing over 20,000 unambiguously aligned amino acids. To confirm our results, we performed gene jackknife inferences and gene reconciliation analyses on the same dataset. We expect that out approach accounts for potential phylogenetic artefacts due to changes in the evolutionary process having occurred when the guest cyanobacterium became an endosymbiont and eventually a plastid. Meanwhile, we improve the phylogeny of Cyanobacteria per se, notably because of the presence of Melainabacteria in our dataset. [less ▲]

Detailed reference viewed: 151 (12 ULiège)
Full Text
Peer Reviewed
See detailThe unusual Gasteromycetes Lycogalopsis solmsii belongs to the gomphoid-phalloid group
Demoulin, Vincent ULiege; Cornet, Luc ULiege; Delbruyère, Emilie et al

in Acta Mycologica (2013), 48(1), 13-20

The rare tropical Gasteromycetes Lycogalopsis solmsii has been found twice at thirty years interval in the Singapore Botanic Gardens. From the most recent find a culture could be isolated, which allowed ... [more ▼]

The rare tropical Gasteromycetes Lycogalopsis solmsii has been found twice at thirty years interval in the Singapore Botanic Gardens. From the most recent find a culture could be isolated, which allowed DNA extraction and sequencing of about 2000 bp from the nuclear ribosomal DNA. Comparison to a large sample of Basidiomycetes was only possible for a part of the large ribosomal subunit, but clearly indicated affiliation to the gomphoid-phalloid group, without any relationship to Lycoperdales or Agaricales, as stated in the Dictionary of the Fungi. [less ▲]

Detailed reference viewed: 60 (4 ULiège)
Full Text
Peer Reviewed
See detailA Middle Devonian Callixylon (Archaeopteridales) from Ronquières, Belgium
Cornet, Luc ULiege; Gerrienne, Philippe ULiege; Meyer-Berthaud, Brigitte et al

in Review of Palaeobotany and Palynology (2012), 183

Detailed reference viewed: 46 (22 ULiège)
Full Text
See detailUn Callixylon (Archaeopteridales) du Dèvonien moyen de Belgique.
Cornet, Luc ULiege; Gerrienne, Philippe ULiege; Meyer-Berthaud, Brigitte et al

Conference (2012, June 21)

Detailed reference viewed: 30 (12 ULiège)
Full Text
See detailEtude de spécimens de progymnospermes «type Callixylon » de Ronquières (Dévonien moyen, Belgique).
Cornet, Luc ULiege; Gerrienne, Philippe ULiege; Meyer-Berthaud, Brigitte

in Miscellanea palaeontologica 2010 (2010, November 30)

Detailed reference viewed: 46 (0 ULiège)