References of "Corcoran, M. F"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailA Coordinated X-Ray and Optical Campaign of the Nearest Massive Eclipsing Binary, δ Orionis Aa. I. Overview of the X-Ray Spectrum
Corcoran, M. F.; Nichols, J. S.; Pablo, H. et al

in Astrophysical Journal (2015), 809

We present an overview of four deep phase-constrained Chandra HETGS X-ray observations of δ Ori A. Delta Ori A is actually a triple system that includes the nearest massive eclipsing spectroscopic binary ... [more ▼]

We present an overview of four deep phase-constrained Chandra HETGS X-ray observations of δ Ori A. Delta Ori A is actually a triple system that includes the nearest massive eclipsing spectroscopic binary, δ Ori Aa, the only such object that can be observed with little phase-smearing with the Chandra gratings. Since the fainter star, δ Ori Aa2, has a much lower X-ray luminosity than the brighter primary (δ Ori Aa1), δ Ori Aa provides a unique system with which to test the spatial distribution of the X-ray emitting gas around δ Ori Aa1 via occultation by the photosphere of, and wind cavity around, the X-ray dark secondary. Here we discuss the X-ray spectrum and X-ray line profiles for the combined observation, having an exposure time of nearly 500 ks and covering nearly the entire binary orbit. The companion papers discuss the X-ray variability seen in the Chandra spectra, present new space-based photometry and ground-based radial velocities obtained simultaneously with the X-ray data to better constrain the system parameters, and model the effects of X-rays on the optical and UV spectra. We find that the X-ray emission is dominated by embedded wind shock emission from star Aa1, with little contribution from the tertiary star Ab or the shocked gas produced by the collision of the wind of Aa1 against the surface of Aa2. We find a similar temperature distribution to previous X-ray spectrum analyses. We also show that the line half-widths are about 0.3‑0.5 times the terminal velocity of the wind of star Aa1. We find a strong anti-correlation between line widths and the line excitation energy, which suggests that longer-wavelength, lower-temperature lines form farther out in the wind. Our analysis also indicates that the ratio of the intensities of the strong and weak lines of Fe xvii and Ne x are inconsistent with model predictions, which may be an effect of resonance scattering. [less ▲]

Detailed reference viewed: 9 (1 ULg)
Full Text
Peer Reviewed
See detailA Coordinated X-Ray and Optical Campaign of the Nearest Massive Eclipsing Binary, δ Orionis Aa. IV. A Multiwavelength, Non-LTE Spectroscopic Analysis
Shenar, T.; Oskinova, L.; Hamann, W.-R. et al

in Astrophysical Journal (2015), 809

Eclipsing systems of massive stars allow one to explore the properties of their components in great detail. We perform a multi-wavelength, non-LTE analysis of the three components of the massive multiple ... [more ▼]

Eclipsing systems of massive stars allow one to explore the properties of their components in great detail. We perform a multi-wavelength, non-LTE analysis of the three components of the massive multiple system δ Ori A, focusing on the fundamental stellar properties, stellar winds, and X-ray characteristics of the system. The primary’s distance-independent parameters turn out to be characteristic for its spectral type (O9.5 II), but usage of the Hipparcos parallax yields surprisingly low values for the mass, radius, and luminosity. Consistent values follow only if δ Ori lies at about twice the Hipparcos distance, in the vicinity of the σ-Orionis cluster. The primary and tertiary dominate the spectrum and leave the secondary only marginally detectable. We estimate the V-band magnitude difference between primary and secondary to be {{Δ }}V≈ 2\buildrel{{m}}\over{.} 8. The inferred parameters suggest that the secondary is an early B-type dwarf (≈B1 V), while the tertiary is an early B-type subgiant (≈B0 IV). We find evidence for rapid turbulent velocities (∼200 km s[SUP]‑1[/SUP]) and wind inhomogeneities, partially optically thick, in the primary’s wind. The bulk of the X-ray emission likely emerges from the primary’s stellar wind ({log}{L}[SUB]{{X[/SUB]}}/{L}[SUB]{Bol[/SUB]}≈ -6.85), initiating close to the stellar surface at {R}[SUB]0[/SUB]∼ 1.1 {R}[SUB]*[/SUB]. Accounting for clumping, the mass-loss rate of the primary is found to be {log}\dot{M}≈ -6.4 ({M}[SUB]ȯ [/SUB] {{yr}}[SUP]-1[/SUP]), which agrees with hydrodynamic predictions, and provides a consistent picture along the X-ray, UV, optical, and radio spectral domains. [less ▲]

Detailed reference viewed: 14 (1 ULg)
Full Text
Peer Reviewed
See detailA Coordinated X-Ray and Optical Campaign of the Nearest Massive Eclipsing Binary, δ Orionis Aa. II. X-Ray Variability
Nichols, J.; Huenemoerder, D. P.; Corcoran, M. F. et al

in Astrophysical Journal (2015), 809

We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution spectral data set of the δ Ori Aa binary system. The four observations, obtained with Chandra ACIS ... [more ▼]

We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution spectral data set of the δ Ori Aa binary system. The four observations, obtained with Chandra ACIS HETGS, have a total exposure time of ≈ 479 ks and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range of 5–25 Å is confirmed, with a maximum amplitude of about ±15% within a single ≈ 125 ks observation. Periods of 4.76 and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in the flux level throughout the nine-day observational campaign. Using 40 ks contiguous spectra derived from the original observations, we investigate the variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S xv, Si xiii, and Ne ix. For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at ϕ = 0.0 when the secondary δ Ori Aa2 is at the inferior conjunction. Using 3D hydrodynamic modeling of the interacting winds, we relate the emission line width variability to the presence of a wind cavity created by a wind–wind collision, which is effectively void of embedded wind shocks and is carved out of the X-ray-producing primary wind, thus producing phase-locked X-ray variability. Based on data from the Chandra X-ray Observatory and the MOST satellite, a Canadian Space Agency mission, jointly operated by Dynacon Inc., the University of Toronto Institute of Aerospace Studies, and the University of British Columbia, with the assistance of the University of Vienna. [less ▲]

Detailed reference viewed: 24 (1 ULg)
Full Text
Peer Reviewed
See detailV444 Cygni X-ray and polarimetric variability: Radiative and Coriolis forces shape the wind collision region
Lomax, J. R.; Nazé, Yaël ULg; Hoffman, J. L. et al

in Astronomy and Astrophysics (2015), 573

We present results from a study of the eclipsing, colliding-wind binary V444 Cyg that uses a combination of X-ray and optical spectropolarimetric methods to describe the 3D nature of the shock and wind ... [more ▼]

We present results from a study of the eclipsing, colliding-wind binary V444 Cyg that uses a combination of X-ray and optical spectropolarimetric methods to describe the 3D nature of the shock and wind structure within the system. We have created the most complete X-ray light curve of V444 Cyg to date using 40 ks of new data from Swift, and 200 ks of new and archived XMM-Newton observations. In addition, we have characterized the intrinsic, polarimetric phase-dependent behavior of the strongest optical emission lines using data obtained with the University of Wisconsin's Half-Wave Spectropolarimeter. We have detected evidence of the Coriolis distortion of the wind-wind collision in the X-ray regime, which manifests itself through asymmetric behavior around the eclipses in the system's X-ray light curves. The large opening angle of the X-ray emitting region, as well as its location (i.e. the WN wind does not collide with the O star, but rather its wind) are evidence of radiative braking/inhibition occurring within the system. Additionally, the polarimetric results show evidence of the cavity the wind-wind collision region carves out of the Wolf-Rayet star's wind. [less ▲]

Detailed reference viewed: 22 (0 ULg)
See detailTime-Resolved X-ray Spectroscopy of the Massive Binary delta Ori
Nichols, Joy S.; Nazé, Yaël ULg; Corcoran, M. F. et al

in American Astronomical Society Meeting Abstracts (2014, January 01)

We have obtained 500 ks of Chandra HETG observations of the massive binary delta Ori (O9.5II+unseen companion), one of the fundamental calibrators of the mass-luminosity-radius relation in the upper HR ... [more ▼]

We have obtained 500 ks of Chandra HETG observations of the massive binary delta Ori (O9.5II+unseen companion), one of the fundamental calibrators of the mass-luminosity-radius relation in the upper HR diagram. The program is intended to map the emission line parameters as the secondary moves through the wind of the primary star. Custom extraction techniques have been developed to create 12 time-resolved 40 ks spectra from these observations, each of which is properly calibrated for time and temperature effects. Emission line fluxes for these time slice spectra are presented, as well as phase analysis of the variability of the fluxes. We discuss the interpretation of the resulting data, such as colliding winds and occultation of various temperature regimes of the primary wind by the secondary. [less ▲]

Detailed reference viewed: 12 (1 ULg)
Full Text
Peer Reviewed
See detailX-ray properties of the young open clusters HM1 and IC 2944/2948
Nazé, Yaël ULg; Rauw, Grégor ULg; Sana, H. et al

in Astronomy and Astrophysics (2013), 555

Using XMM-Newton data, we study for the first time the X-ray emission of HM1 and IC 2944/2948. Low-mass, pre-main-sequence objects with an age of a few Myr are detected, as well as a few background or ... [more ▼]

Using XMM-Newton data, we study for the first time the X-ray emission of HM1 and IC 2944/2948. Low-mass, pre-main-sequence objects with an age of a few Myr are detected, as well as a few background or foreground objects. Most massive stars in both clusters display the usual high-energy properties of that type of objects, though with log [L[SUB]X[/SUB]/L[SUB]BOL[/SUB]] apparently lower in HM1 than in IC 2944/2948. Compared with studies of other clusters, it seems that a low signal-to-noise ratio at soft energies, due to the high extinction, may be the main cause of this difference. In HM1, the two Wolf-Rayet stars show contrasting behaviors: WR89 is extremely bright, but much softer than WR87. It remains to be seen whether wind-wind collisions or magnetically confined winds can explain these emissions. In IC 2944/2948, the X-ray sources concentrate around HD 101205; a group of massive stars to the north of this object is isolated, suggesting that there exist two subclusters in the field-of-view. Tables 2, 5, and Figs. 5, 9 are available in electronic form at <A href="http://www.aanda.org">http://www.aanda.org</A>Based on observations collected with XMM-Newton, an ESA Science Mission with instruments and contributions directly funded by ESA Member States and the USA (NASA).Tables 1, 3 and 4 are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/555/A83">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/555/A83</A> [less ▲]

Detailed reference viewed: 12 (1 ULg)
Full Text
See detail2009: A Colliding-Wind Odyssey
Fahed, R.; Moffat, A. F. J.; Zorec, J. et al

in Astronomical Society of the Pacific Conference Series (2013, January 01)

We present the results from two optical spectroscopic campaigns on colliding-wind binaries (CWB) which both occurred in 2009. The first one was on WR 140 (WC7pd + O5.5fc), the archetype of CWB, which ... [more ▼]

We present the results from two optical spectroscopic campaigns on colliding-wind binaries (CWB) which both occurred in 2009. The first one was on WR 140 (WC7pd + O5.5fc), the archetype of CWB, which experienced periastron passage of its highly elliptical 8-year orbit in January. The WR 140 campaign consisted of a unique and constructive collaboration between amateur and professional astronomers and took place at half a dozen locations, including Teide Observatory, Observatoire de Haute Provence, Dominion Astrophysical Observatory, Observatoire du Mont-Mégantic and at several small private observatories. The second campaign was on a selection of 5 short-period WR + O binaries not yet studied for colliding-wind effects: WR 12 (WN8h), WR 21 (WN5o + O7 V), WR 30 (WC6 + O7.5 V), WR 31 (WN4o + O8), and WR 47 (WN6o + O5). The campaign took place at Leoncito Observatory, Argentina, during 1 month. We provide updated values of most of these systems for the orbital parameters, new estimates for the WR and O star masses and new constraints on the mass-loss rates and colliding wind geometry. [less ▲]

Detailed reference viewed: 9 (0 ULg)
Full Text
Peer Reviewed
See detailSpectroscopy of the archetype colliding-wind binary WR 140 during the 2009 January periastron passage
Fahed, R.; Moffat, A. F. J.; Zorec, J. et al

in Monthly Notices of the Royal Astronomical Society (2011), 418

We present the results from the spectroscopic monitoring of WR 140 (WC7pd + O5.5fc) during its latest periastron passage in 2009 January. The observational campaign consisted of a constructive ... [more ▼]

We present the results from the spectroscopic monitoring of WR 140 (WC7pd + O5.5fc) during its latest periastron passage in 2009 January. The observational campaign consisted of a constructive collaboration between amateur and professional astronomers. It took place at six locations, including Teide Observatory, Observatoire de Haute Provence, Dominion Astrophysical Observatory and Observatoire du Mont Mégantic. WR 140 is known as the archetype of colliding-wind binaries and it has a relatively long period (?8 yr) and high eccentricity (?0.9). We provide updated values for the orbital parameters, new estimates for the WR and O star masses and new constraints on the mass-loss rates and colliding-wind geometry. [less ▲]

Detailed reference viewed: 18 (2 ULg)
Full Text
Peer Reviewed
See detailGlobal X-ray Properties of the O and B Stars in Carina
Nazé, Yaël ULg; Broos, P. S.; Oskinova, L. et al

in Astrophysical Journal Supplement Series (2011), 194

The key empirical property of the X-ray emission from O stars is a strong correlation between the bolometric and X-ray luminosities. In the framework of the Chandra Carina Complex Project, 129 O and B ... [more ▼]

The key empirical property of the X-ray emission from O stars is a strong correlation between the bolometric and X-ray luminosities. In the framework of the Chandra Carina Complex Project, 129 O and B stars have been detected as X-ray sources; 78 of those, all with spectral type earlier than B3, have enough counts for at least a rough X-ray spectral characterization. This leads to an estimate of the L [SUB]X[/SUB]-L [SUB]BOL[/SUB] ratio for an exceptional number of 60 O stars belonging to the same region and triples the number of Carina massive stars studied spectroscopically in X-rays. The derived log(L [SUB]X[/SUB]/L [SUB]BOL[/SUB]) is -7.26 for single objects, with a dispersion of only 0.21 dex. Using the properties of hot massive stars listed in the literature, we compare the X-ray luminosities of different types of objects. In the case of O stars, the L [SUB]X[/SUB]-L [SUB]BOL[/SUB] ratios are similar for bright and faint objects, as well as for stars of different luminosity classes or spectral types. Binaries appear only slightly harder and slightly more luminous in X-rays than single objects; the differences are not formally significant (at the 1% level), except for the L [SUB]X[/SUB]-L [SUB]BOL[/SUB] ratio in the medium (1.0-2.5 keV) energy band. Weak-wind objects have similar X-ray luminosities but they display slightly softer spectra compared with "normal" O stars with the same bolometric luminosity. Discarding three overluminous objects, we find a very shallow trend of harder emission in brighter objects. The properties of the few B stars bright enough to yield some spectral information appear to be different overall (constant X-ray luminosities, harder spectra), hinting that another mechanism for producing X-rays, besides wind shocks, might be at work. However, it must be stressed that the earliest and X-ray brightest among these few detected objects are similar to the latest O stars, suggesting a possibly smooth transition between the two processes. [less ▲]

Detailed reference viewed: 16 (1 ULg)
Full Text
See detailThe WR 140 periastron passage 2009: first results from MONS and other optical sources
Fahed, R.; Moffat, A. F. J.; Zorec, J. et al

in Eversberg, Thomas; Knapen, Johan (Eds.) Stellar Winds in Interaction (2011, January 01)

We present the results from the spectroscopic follow-up of WR140 (WC7 + O4-5) during its last periastron passage in January 2009. This object is known as the archetype of colliding wind binaries and has a ... [more ▼]

We present the results from the spectroscopic follow-up of WR140 (WC7 + O4-5) during its last periastron passage in January 2009. This object is known as the archetype of colliding wind binaries and has a relatively large period (~ 8 years) and eccentricity (~ 0.89). We provide updated values for the orbital parameters, new estimates for the WR and O star masses and new constraints on the mass-loss rates. [less ▲]

Detailed reference viewed: 16 (1 ULg)
Full Text
Peer Reviewed
See detail3D modelling of the massive star binary systems Eta Carinae, WR 22, and WR 140
Parkin, E. R.; Pittard, J. M.; Corcoran, M. F. et al

in Bulletin de la Societe Royale des Sciences de Liege (2011), 80

Massive stars possess powerful stellar winds. Wind-wind collision in a massive star binary system generates a region of thermalized plasma which may emit prolifically at X-ray wavelengths. Results are ... [more ▼]

Massive stars possess powerful stellar winds. Wind-wind collision in a massive star binary system generates a region of thermalized plasma which may emit prolifically at X-ray wavelengths. Results are presented from 3D adaptive-mesh refinement (AMR) hydrodynamical models which include radiative cooling and the radiative driving of the stellar winds. The models provide an exceptional insight into the turbulent nature of the wind-wind interaction regions. The X-ray emission from the hydrodynamical models is then calculated, allowing detailed comparisons with observational data. Preliminary results from investigations of Eta Carinae, WR 22, and WR 140 are discussed. [less ▲]

Detailed reference viewed: 33 (1 ULg)
Full Text
Peer Reviewed
See detailSpectroscopic follow-up of the colliding-wind binary WR140 during the 2009 January periastron passage
Fahed, R.; Moffat, A. F. J.; Zorec, J. et al

in Bulletin de la Societe Royale des Sciences de Liege (2011), 80

We present the results from the spectroscopic follow-up of WR140 (WC7 + O4-5) during its last periastron passage in January 2009. This object is known as the archetype of colliding wind binaries and has a ... [more ▼]

We present the results from the spectroscopic follow-up of WR140 (WC7 + O4-5) during its last periastron passage in January 2009. This object is known as the archetype of colliding wind binaries and has a relatively large period (≃8 years) and eccentricity (≃0.9). We provide updated values for the orbital parameters, new estimates for the WR and O star masses and new constraints on the mass-loss rates. [less ▲]

Detailed reference viewed: 40 (2 ULg)
Full Text
Peer Reviewed
See detailThe Mons campaign on OB stars
Morel, Thierry ULg; Rauw, Grégor ULg; Eversberg, T. et al

in Bulletin de la Société Royale des Sciences de Liège (2011), 80

Detailed reference viewed: 14 (3 ULg)
Full Text
Peer Reviewed
See detailAn XMM-Newton observation of the Lagoon Nebula and the very young open cluster NGC 6530
Rauw, Grégor ULg; Nazé, Yaël ULg; Gosset, Eric ULg et al

in Astronomy and Astrophysics (2002), 395(2), 499-513

We report the results of an XMM-Newton observation of the Lagoon Nebula (M8). Our EPIC images of this region reveal a cluster of point sources, most of which have optical counterparts inside the very ... [more ▼]

We report the results of an XMM-Newton observation of the Lagoon Nebula (M8). Our EPIC images of this region reveal a cluster of point sources, most of which have optical counterparts inside the very young open cluster NGC6530. The bulk of these X-ray sources are probably associated with low and intermediate mass pre-main sequence stars. One of the sources experienced a flare-like increase of its X-ray flux making it the second brightest source in M8 after the O4 star 9 Sgr. The X-ray spectra of most of the brightest sources can be fitted with thermal plasma models with temperatures of kT similar to a few keV. Only a few of the X-ray selected PMS candidates are known to display Halpha emission and were previously classified as classical T Tauri stars. This suggests that most of the X-ray emitting PMS stars in NGC6530 are weak-line T Tauri stars. In addition to 9 Sgr, our EPIC field of view contains also a few early-type stars. The X-ray emission from HD 164816 is found to be typical for an O9.5 III-IV star. At least one of the known Herbig Be stars in NGC6530 ( LkHalpha 115) exhibits a relatively strong X-ray emission, while most of the main sequence stars of spectral type B1 and later are not detected. We also detect ( probably) diffuse X-ray emission from the Hourglass Region that might reveal a hot bubble blown by the stellar wind of Herschel 36, the ionizing star of the Hourglass Region. [less ▲]

Detailed reference viewed: 50 (10 ULg)
Full Text
See detailAn XMM-Newton Study of 9SGR and the Lagoon Nebula
Rauw, Grégor ULg; Blomme, R.; Waldron, W. L. et al

Conference (2001, January 01)

Detailed reference viewed: 13 (0 ULg)
Full Text
Peer Reviewed
See detailASCA spectroscopy of the hard X-ray emission from the colliding wind interaction in gamma[SUP]2[/SUP] Velorum
Rauw, Grégor ULg; Stevens, I. R.; Pittard, J. M. et al

in Monthly Notices of the Royal Astronomical Society (2000), 316

We discuss an ASCA observation of the eccentric WC8+O7.5III binary gamma[SUP]2[/SUP]Velorum near apastron. The X-ray spectrum is compared with two previous observations obtained when the system was near ... [more ▼]

We discuss an ASCA observation of the eccentric WC8+O7.5III binary gamma[SUP]2[/SUP]Velorum near apastron. The X-ray spectrum is compared with two previous observations obtained when the system was near periastron. All three spectra display a hard-emission component that undergoes strong variability over the orbital cycle. The properties of the hard X-ray emission of gamma[SUP]2[/SUP]Vel are constrained by taking into account the contribution from contaminating soft X-ray sources in the vicinity of gamma[SUP]2[/SUP]Vel. We find that the observed variations are in qualitative agreement with the predictions of colliding wind models. We investigate for the first time the effect of uncertainties in the chemical composition of the X-ray emitting plasma on our understanding of the high-energy properties of the wind interaction region. Our results indicate that these uncertainties significantly affect the derived shock temperature and absorption column, but play a smaller role in determining the intrinsic X-ray luminosity of the colliding wind zone. We further find that the intrinsic luminosity from the hard X-ray component in gamma[SUP]2[/SUP]Vel does not follow the 1/D distance relation expected from simple models of adiabatic shocks. [less ▲]

Detailed reference viewed: 12 (0 ULg)