References of "Contreras-Martel, Carlos"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailStructure-Guided Design of Cell Wall Biosynthesis Inhibitors That Overcome beta-Lactam Resistance in Staphylococcus aureus (MRSA).
Contreras-Martel, Carlos; Amoroso, Ana Maria ULg; Woon, Esther C.Y. et al

in ACS Chemical Biology (2011)

beta-Lactam antibiotics have long been a treatment of choice for bacterial infections since they bind irreversibly to Penicillin-Binding Proteins (PBPs), enzymes that are vital for cell wall biosynthesis ... [more ▼]

beta-Lactam antibiotics have long been a treatment of choice for bacterial infections since they bind irreversibly to Penicillin-Binding Proteins (PBPs), enzymes that are vital for cell wall biosynthesis. Many pathogens express drug-insensitive PBPs rendering beta-lactams ineffective, revealing a need for new types of PBP inhibitors active against resistant strains. We have identified alkyl boronic acids that are active against pathogens including methicillin-resistant S. aureus (MRSA). The crystal structures of PBP1b complexed to 11 different alkyl boronates demonstrate that in vivo efficacy correlates with the mode of inhibitor side chain binding. Staphylococcal membrane analyses reveal that the most potent alkyl boronate targets PBP1, an autolysis system regulator, and PBP2a, a low beta-lactam affinity enzyme. This work demonstrates the potential of boronate-based PBP inhibitors for circumventing beta-lactam resistance and opens avenues for the development of novel antibiotics that target Gram-positive pathogens. [less ▲]

Detailed reference viewed: 45 (3 ULg)
Full Text
Peer Reviewed
See detailThe structure at 2 A resolution of Phycocyanin from Gracilaria chilensis and the energy transfer network in a PC-PC complex.
Contreras-Martel, Carlos; Matamala, Adelio; Bruna, Carola et al

in Biophysical Chemistry (2007), 125(2-3), 388-96

Phycocyanin is a phycobiliprotein involved in light harvesting and conduction of light to the reaction centers in cyanobacteria and red algae. The structure of C-phycocyanin from Gracilaria chilensis was ... [more ▼]

Phycocyanin is a phycobiliprotein involved in light harvesting and conduction of light to the reaction centers in cyanobacteria and red algae. The structure of C-phycocyanin from Gracilaria chilensis was solved by X-ray crystallography at 2.0 A resolution in space group P2(1). An interaction model between two PC heterohexamers was built, followed by molecular dynamic refinement. The best model showed an inter-hexamer rotation of 23 degrees . The coordinates of a PC heterohexamer (alphabeta)(6) and of the PC-PC complex were used to perform energy transfer calculations between chromophores pairs using the fluorescence resonance energy transfer approach (FRET). Two main intra PC ((I)beta(3)(82)-->(I)alpha(1)(84)-->(I)alpha(5)(84)-->(I)beta(6)(82) and (I)beta(3)(153)-->(I)beta(5)(153)) and two main inter PC ((I)beta(6)(82)-->(II)beta(3)(82) and (I)beta(5)(153)-->(II)beta(3)(153)) pathways were proposed based on the values of the energy transfer constants calculated for all the chromophore pairs in the hexamer and in the complex. [less ▲]

Detailed reference viewed: 11 (0 ULg)