References of "Colinet, Gilles"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailCaractérisation des systèmes sol-plante dans les collines de l’arc cuprifère du Katanga - revue bibliographique
Kaya Muyumba, Donato; Liénard, Amandine ULg; Mahy, Grégory ULg et al

in Biotechnologie, Agronomie, Société et Environnement = Biotechnology, Agronomy, Society and Environment [=BASE] (in press)

Introduction: The Copper belt of Katanga presents huge resources of Cu and Co-ore. On the copper hills, mineralized rocks outcrop and a specific flora did develop as a response to the high levels of Cu ... [more ▼]

Introduction: The Copper belt of Katanga presents huge resources of Cu and Co-ore. On the copper hills, mineralized rocks outcrop and a specific flora did develop as a response to the high levels of Cu and Co in soil. Soil-vegetation relationships need to be understood in order to elaborate biodiversity conservation programs prior to industrial mining of the copper hills. Literature: This paper reviews knowledge about soil characterization in the copper hills of Katanga and makes proposals for further research about the influence of the very specific chemical conditions of contaminated soils on the vegetation. The focus was put on the geochemical background and the bioavailability of Cu and Co. A lot of progress has been made recently about identification of soil-vegetation relationships. Conclusion: However, the issue of Cu and Co mobility within soil-plant systems is not entirely solved. [less ▲]

Detailed reference viewed: 34 (11 ULg)
Full Text
Peer Reviewed
See detailÉVOLUTION DE LA TENEUR EN EAU LE LONG D’UNE TOPOSEQUENCE FORESTIERE ARGILO-LIMONEUSE
Deraedt, Deborah ULg; Colinet, Gilles ULg; Degré, Aurore ULg

in Milieux Poreux et Transferts Hydriques (in press)

For the hydrological modeling of forested watersheds, the understanding of the forest hydrodynamic is essential. This study focusses on the hydrology of a Belgian forested plot with high stoniness and ... [more ▼]

For the hydrological modeling of forested watersheds, the understanding of the forest hydrodynamic is essential. This study focusses on the hydrology of a Belgian forested plot with high stoniness and steep slope. The soil water content is monitored at several positions on the toposequence and at different depth. During rain events, peak in soil water content are observed in different depth depending on the position along the toposequence. [less ▲]

Detailed reference viewed: 89 (33 ULg)
Full Text
See detailEvaluation of soil structural changes through macroscopic and microscopic measurement
Parvin, Nargish ULg; Degré, Aurore ULg; Chelin, Marie ULg et al

Poster (2015, April 16)

The heterogeneity of soil structure and pore size distribution are highly influenced by external factors like tillage systems and other agricultural management practices. However, changes in soil ... [more ▼]

The heterogeneity of soil structure and pore size distribution are highly influenced by external factors like tillage systems and other agricultural management practices. However, changes in soil hydrodynamic behavior are not fully understood and are still under research. Also, researchers have explained the impact of tillage practices on soil hydraulic properties related to pore size distribution, connectivity and orientation are involved but the characterization of these modifications and consequences remains a challenge. Furthermore, the relation between macroscopic measurements and microscopic investigation of the soil structure remains scarce. Recently, X-ray tomography (X- μCT) has been used in order to characterize changes in soil pore size distribution in various contexts and the method is able to link microtomography information to hydrodynamic measurement. In our study, X-μCT has been used in order to characterize changes in soil pore system. Since, tomography does not count most of the micropores, Richards’ pressure plate and evaporation method was also combined to get complete range of pore size distribution. We found good match between evaporation data with X-μCT at the macropore scale and evaporation data with pressure plate method at micropore scale. X-μCT data refines retention and hydraulic curves near saturation where Richards’ data alone can lead to numerous sets of fitted parameters. On the otherhand, evaporation data (Hyprop apparatus ©) provide comparable datasets with X-μCT. Combining micro and macroscopic measurements allows us to validate X-μCT information, which is otherwise not so obvious. [less ▲]

Detailed reference viewed: 20 (0 ULg)
Full Text
Peer Reviewed
See detailDetermination of Zinc, Cadmium and Lead Bioavailability in Contaminated Soils at the Single-Cell Level by a Combination of Whole-Cell Biosensors and Flow Cytometry
Hurdebise, Quentin ULg; Tarayre, Cédric ULg; Fischer, Christophe ULg et al

in Sensors (2015)

Zinc, lead and cadmium are metallic trace elements (MTEs) that are widespread in the environment and tend to accumulate in soils because of their low mobility and non-degradability. The purpose of this ... [more ▼]

Zinc, lead and cadmium are metallic trace elements (MTEs) that are widespread in the environment and tend to accumulate in soils because of their low mobility and non-degradability. The purpose of this work is to evaluate the applicability of biosensors as tools able to provide data about the bioavailability of such MTEs in contaminated soils. Here, we tested the genetically-engineered strain Escherichia coli pPZntAgfp as a biosensor applicable to the detection of zinc, lead and cadmium by the biosynthesis of green fluorescent protein (GFP) accumulating inside the cells. Flow cytometry was used to investigate the fluorescence induced by the MTEs. A curvilinear response to zinc between 0 and 25 mg/L and another curvilinear response to cadmium between 0 and 1.5 mg/L were highlighted in liquid media, while lead did not produce exploitable results. The response relating to a Zn2+/Cd2+ ratio of 10 was further investigated. In these conditions, E. coli pPZntAgfp responded to cadmium only. Several contaminated soils with a Zn2+/Cd2+ ratio of 10 were analyzed with the biosensor, and the metallic concentrations were also measured by atomic absorption spectroscopy. Our results showed that E. coli pPZntAgfp could be used as a monitoring tool for contaminated soils being processed. [less ▲]

Detailed reference viewed: 21 (7 ULg)
Full Text
See detailInvestigating the Effects of Plant Root Exudates on PAHs Bioavailability to Soil Microorganisms in Contaminated Brownfields : Research Methodology.
Davin, Marie ULg; Lognay, Georges ULg; Fauconnier, Marie-Laure ULg et al

Poster (2015, January 30)

As a result of heavy industrial past activities, an estimated 6,000 brownfields require remediation in Wallonia. This number rises to over 3.5 million in Europe. Polycyclic Aromatic Hydrocarbons (PAHs ... [more ▼]

As a result of heavy industrial past activities, an estimated 6,000 brownfields require remediation in Wallonia. This number rises to over 3.5 million in Europe. Polycyclic Aromatic Hydrocarbons (PAHs) represent 17% of treated pollutants in Wallonia (Aldric et al., 2011). Current remediation techniques are rather expensive and technically demanding (Megharaj et al., 2011). Based on the observation that PAHs soil content decreases in the presence of plants (Cheema et al., 2010), the PhD aims at developing alternative PAHs remediation techniques in brownfields. It is articulated around three research axes. The first axis focusses on plant exudates and how they may improve PAHs bioavailability to soil microorganisms and enhance their degradation. This will be investigated by (i) characterizing several contaminated soils (physico-chemical parameters) and PAH content and factors of bioavailability, (ii) selecting a plant model and collecting root exudates, and (iii) evaluating the effects of exudates on PAHs bioavailability. The objective of the second axis is to evaluate the effects of plant exudates on PAHs degrading microorganisms by (i) comparing PAHs biodegradation in the presence/absence of exudates and (ii) assessing the potential toxic effects of exudate compounds on the microbial communities. The aim of the third axis is to study plant-pollutants interactions by (i) establishing the plant tolerance to several contamination levels and (ii) following PAHs bioavailability when facing real exudation rates, on the field. [less ▲]

Detailed reference viewed: 37 (3 ULg)
Full Text
Peer Reviewed
See detailA novel sub-phylum method discriminates better the impact of crop management on soil microbial community
Degrune, Florine ULg; Dufrêne, Marc ULg; Colinet, Gilles ULg et al

in Agronomy for Sustainable Development (2015)

Soil microorganisms such as mycorrhizae and plant-growth-promoting rhizobacteria have beneficial effects on crop productivity. Agricultural practices are known to impact soil microbial communities, but ... [more ▼]

Soil microorganisms such as mycorrhizae and plant-growth-promoting rhizobacteria have beneficial effects on crop productivity. Agricultural practices are known to impact soil microbial communities, but past studies examining this impact have focused mostly on one or two taxonomic levels, such as phylum and class, thus missing potentially relevant information from lower levels. Therefore we propose here an original, sub-phylum method for studying how agricultural practices modify microbial communities. This method involves exploiting the available sequence information at the lowest taxonomic level attainable for each operational taxonomic unit. In order to validate this novel method we assessed microbial community composition using 454 pyrosequencing of 16S and 28S rRNA genes, then we compared the results with results of a phylum-level analysis. Agricultural practices included conventional tillage, reduced tillage, residue removal and residue retention. Results show that, at the lowest taxonomic level attainable, tillage is the main factor influencing both bacterial community composition, accounting for 13% of the variation, and fungal community composition, accounting for 18% of the variation. Whereas phylum-level analysis failed to reveal any effect of soil practice on bacterial community composition, and missed the fact that different members of the same phylum responded differently to tillage practice. For instance, the fungal phylum Chytridiomycota showed no impact of soil treatment, while sub-phylum-level analysis revealed an impact of tillage practice on the Chytridiomycota sub-groups Gibberella, which includes a notorious wheat pathogen, and Trichocomaceae. This clearly demonstrates the necessity of exploiting the information obtainable at sub-phylum level when assessing the effects of agricultural practice on microbial communities. [less ▲]

Detailed reference viewed: 34 (17 ULg)
Full Text
Peer Reviewed
See detailDegree of phosphorus saturation in agricultural loamy soils with a near-neutral pH
Renneson, Malorie ULg; Vandenberghe, Christophe ULg; Dufey, Joseph et al

in European Journal of Soil Science (2015), 66

The degree of phosphorus saturation (DPS) represents the ratio of sorbed phosphorus (P) to the P sorption capacity (PSC) of soils. In some countries, DPS is used to evaluate the risk of P loss and surface ... [more ▼]

The degree of phosphorus saturation (DPS) represents the ratio of sorbed phosphorus (P) to the P sorption capacity (PSC) of soils. In some countries, DPS is used to evaluate the risk of P loss and surface water eutrophication. This study investigated DPS measurement and prediction in neutral loamy soils fromWallonia, Belgium. A total of 57 agricultural topsoil samples subject to diverse P management were evaluated. No satisfactory relationship could be found between PSC determined by a one-point short-term isotherm in the laboratory and the sum of aluminium and iron extracted by oxalate (Alox +Feox). The equation PSC=a Alox +b pHw appeared to be more appropriate for estimating PSC in the soils studied. These soils had a near-neutral pH, and P fixation processes linked to the presence of calcium ions or carbonates were important. Comparisons of DPS with soil-test P and water-extracted P suggested that DPS could be a useful agronomic and/or environmental indicator. Our results also showed that DPS values between 20 and 30% corresponded to the agronomic optimum of soil P content. Consequently, DPS may be used as an indicator of P status in neutral soils, provided that the PSC assessment is adapted to the local soil characteristics. [less ▲]

Detailed reference viewed: 26 (6 ULg)
Full Text
Peer Reviewed
See detailImpact of stone content on soil moisture measurement with capacitive sensors 10HS (Decagon)
Deraedt, Deborah ULg; Bernard, Julien ULg; Biettlot, Louise ULg et al

in Geophysical Research Abstracts (2015), 17

Lot of soil survey focused on agricultural soils. For practical reasons, those soils have a low stone content. So, most of the soil water content sensors are placed on low stone content soils and the ... [more ▼]

Lot of soil survey focused on agricultural soils. For practical reasons, those soils have a low stone content. So, most of the soil water content sensors are placed on low stone content soils and the calibration equations are developed for them. Yet some researches take an interest in forest soils that are often much different from the previous ones. The differences lie in their stone content and their slope. Lots of studies have proved the importance of making soil specific calibration of the soil water content sensor. As our lab use regularly the 10HS sensors (Decagon Devices, United States) in forested soil, we decided to evaluate the importance of the stone content in the soil moisture measurement. The soil used for this experimentation comes from Gembloux (50◦33’54.9”N, 4◦42’11.3”E). It is silt that has been sieved at 2 mm to remove the gravel. The stones used to form the samples come from an experimental site located in the Belgian Ardennes (50◦1’52.6”N, 4◦53’22.5”E). They are mainly composed of schist with some quartz and sandstone elements. Initially, only five samples were constructed with three replications each. The size and the proportion of stones were the variables. Stones were classified in two groups, the first contains gravels whose size is less than 1,5 cm and a the second contains gravels whose size is comprised between 2 and 3 cm. The proportions of stone selected for the experiment are 0, 20 and 40%. In order to generate validation data, two more samples were constructed with intermediate proportion of stone content (30%). The samples were built in PVC container which dimensions are slightly bigger than the sensor volume of influence (1.1-1.3l). The soil samples were saturated and then dried on a thermal chamber set at about 32◦C. During at least 14 days, the samples soil water content was determined by the sensor measurement with the Procheck read-out system (Decagon Devices, United State) and by weighting the samples thrice a day. The evolution of the soil sample height was monitored as well. As first result, the stone content is a parameter that seems to influence soil water content. The stone size is no important. Because soil moisture deserves to be measured accurately in every soil and to confirm the first results the experiment is going on with more samples, different stone proportions, other sensor positioning and a natural air drying. [less ▲]

Detailed reference viewed: 9 (0 ULg)
Full Text
Peer Reviewed
See detailDiachronical soil surveys: a way to quantify long term diffuse erosion
Pineux, Nathalie ULg; Michel, Brieuc ULg; Legrain, Xavier ULg et al

in Geophysical Research Abstracts (2015), 17

The loess belt of Western Europe is a high-risk area regarding diffuse erosion. It is due to the climate and the topography but also to the soil type. Loamy soils are naturally highly sensitive to diffuse ... [more ▼]

The loess belt of Western Europe is a high-risk area regarding diffuse erosion. It is due to the climate and the topography but also to the soil type. Loamy soils are naturally highly sensitive to diffuse erosion. Hence, these soils are very fertile. So, they are intensively cultivated which increases their sensitivity to erosion. Sheet erosion is an erosion type strongly represented in these regions. Contrarily to the concentrated form of erosion which happens more brutally, sheet erosion needs long-term observation time-scales, which remains rare. In Belgium, a soil map was established in 1956. This map is quite detailed and notably informs about the different horizons which are in the profile (ploughed horizon, eluvial horizon, clay included between the horizons, carbonate-free loess horizon, and all these were characterised by drainage class) and their depth. It was based on a dense augering network across the country (one point every 75 meters). A new augering campaign was done again in 2014. It consisted in one observation every 50 meters on an agricultural watershed of 124 hectares located in the centre of Belgium. This catchment has been cultivated since the 14th century and is representative of the local context (gentle slope (3-8%), plot size (mean value of 10 ha), …). We compared the two soil maps produced on this site with a 58years time lapse. Results show that the large majority of the watershed falls from upslope soils with weak erosion to slope soils with strong erosion. The soil thickness diminished in some zones to 1m10 (minimum estimation) of erosion. This comparison shows that very few upslope soils are preserved. On the other hand, the areas where colluviums were present to the full depth stay at the same place in the main thalweg of the watershed. Other areas on the watershed seem to be subject to a (minimum estimation) of 40cm of sediments deposition. Large areas in the watershed suffered from erosion and came to deposition areas as the clay horizon is no longer observed under the colluviums. It can be highlighted that soil depths were worryingly lost during 58 years of tillage and that some soils were converted to colluviums which is of lower agronomical quality than the original soils which had a clay horizon below to keep water. Diachronical soil survey offers an unique insight of long term diffuse erosion and should demonstrate the importance of preserving soils even in regions where agricultural yields are not (yet) affected by erosion. [less ▲]

Detailed reference viewed: 20 (4 ULg)
Full Text
Peer Reviewed
See detailContact resistance problems applying ERT on low bulk density forested stony soils Is there a solution?
Deraedt, Deborah ULg; Touzé, Camille; Robert, Tanguy et al

in Geophysical Research Abstracts (2015), 17

Electrical resistivity tomography (ERT) has often been put forward as a promising tool to quantify soil water and solute fluxes in a non-invasive way. In our experiment, we wanted to determine ... [more ▼]

Electrical resistivity tomography (ERT) has often been put forward as a promising tool to quantify soil water and solute fluxes in a non-invasive way. In our experiment, we wanted to determine preferential flow processes along a forested hillslope using a saline tracer with ERT. The experiment was conducted in the Houille watershed, subcatchment of the Meuse located in the North of Belgian Ardennes (50˚1’52.6”N, 4˚53’22.5”E). The climate is continental but the soil under spruce (Picea abies (L.) Karst.) and Douglas fire stand (Pseudotsuga menziesii (Mirb.) Franco) remains quite dry (19% WVC in average) during the whole year. The soil is Cambisol and the parent rock is Devonian schist covered with variable thickness of silty loam soil. The soil density ranges from 1.13 to 1.87 g/cm3 on average. The stone content varies from 20 to 89% and the soil depth fluctuates between 70 and 130 cm. The ERT tests took place on June 1st 2012, April 1st, 2nd and 3rd 2014 and May 12th 2014. We used the Terrameter LS 12 channels (ABEM, Sweden) in 2012 test and the DAS-1 (Multi-Phase Technologies, United States) in 2014. Different electrode configurations and arrays were adopted for different dates (transect and grid arrays and Wenner – Schlumberger, Wenner alpha and dipole-dipole configurations). During all tests, we systematically faced technical problems, mainly related to bad electrode contact. The recorded data show values of contact resistance above 14873 Ω (our target value would be below 3000 Ω). Subsequently, we tried to improve the contact by predrilling the soil and pouring water in the electrode holes. The contact resistance improved to 14040 Ω as minimum. The same procedure with liquid mud was then tested to prevent quick percolation of the water from the electrode location. As a result, the lower contact resistance dropped to 11745 Ω. Finally, we applied about 25 litre of saline solution (CaCl2, 0.75g/L) homogeneously on the electrode grid. The minimum value of contact resistance reduced to 5222 Ω. This improved the contact resistance substantially, but complicates the execution of a pulse tracer experiment. To date we did not find any better solution to this problem and we keep searching a way to improve the contact resistance in stony forested soils with very low bulk density. We would like to exchange on these questions with EGU attendees in order to improve the experimental design or point out a new research path for these specific conditions. This could lead to enhance the use of ERT in soils with low density and high stone content. [less ▲]

Detailed reference viewed: 24 (5 ULg)
Full Text
Peer Reviewed
See detailModeling of cobalt and copper speciation in metalliferous soils from Katanga (Democratic Republic of Congo)
Pourret, Olivier; Lange, Bastien; Houben, David et al

in Journal of Geochemical Exploration (2015), 149

Detailed reference viewed: 16 (4 ULg)
Full Text
See detailDoes the cover crop residue management affect the soil water availability for plants?
Chelin, Marie ULg; Parvin, Nargish ULg; Hiel, Marie-Pierre ULg et al

Poster (2014, December 05)

Hydraulic processes and soil storage capacity may be affected by the crop residue management. Thus, a better understanding of the spatial and temporal distribution of water as a consequence of different ... [more ▼]

Hydraulic processes and soil storage capacity may be affected by the crop residue management. Thus, a better understanding of the spatial and temporal distribution of water as a consequence of different tillage methods is needed. The distribution of soil water content is basically studied thanks to soil moisture sensors such as time domain reflectometry (TDR) probes. However, this method requires the disturbance of the soil and only provides local information. Comparatively, electrical resistivity tomography (ERT) slightly alters the soil structure. It has been considered as a proxy to assess the spatial and temporal variability of the soil water content. This study aims at assessing whether and to which extent the crop residue management influences soil water dynamics and the water availability for maize. Water content will be monitored from March to October 2014, under three crop residue managements: conventional tillage realized in the end of autumn, conventional tillage realized just before sowing, and strip tillage. A bare soil under conventional tillage will also be monitored so as to better understand the influence of the plant over the growing season. So as to better understand the dynamics of water in the soil-water-continuum, the influence of the crop residue management on the soil structure and the plant development will also be investigated. The soil water pattern will be daily monitored on a surface of two square meters through surface stainless steel electrodes, corresponding to three rows of seven maize plants. Five additional sticks with buried electrodes will be setup to get more detailed information near to the maize row. For each of the monitored zone, two TDR probes will help validating the data. In order to calibrate the relationship between electrical resistivity and soil water content, a dig will be dug, in which a set of four electrodes, one TDR probe and one temperature sensor will be placed at four different depths. Two suction cups placed on each of the monitoring zone will help getting the electrical conductivity of the soil solution. [less ▲]

Detailed reference viewed: 20 (5 ULg)
Full Text
Peer Reviewed
See detailBioRefine Project: Detection of bioavailability of Metallic Trace Elements in soils by the use of microbial biosensors
Tarayre, Cédric ULg; Hurdebise, Quentin ULg; Fischer, Christophe ULg et al

Poster (2014, September 09)

Zinc, lead and cadmium are the main Metallic Trace Elements (MTEs) found in soils contaminated by the mining industry in Europe. MTEs are spread in the environment because of the disruption of ... [more ▼]

Zinc, lead and cadmium are the main Metallic Trace Elements (MTEs) found in soils contaminated by the mining industry in Europe. MTEs are spread in the environment because of the disruption of biogeochemical cycles caused by human activities. Due to their low mobility and biodegradability, they accumulate in soils where they are strongly bound to particles. It has become necessary to understand interactions between MTEs and the environment and to implement remediation actions. This work is focused on remediation monitoring techniques by using whole cell microbial biosensors able to detect zinc, lead and cadmium. Biosensors provide a signal in response to the bio-available concentration in MTEs, which are valuable for the design of efficient techniques involving bioremediation. Whole cell biosensors used in this work are based on Escherichia coli strains carrying a fluorescent reporter system. The reporter element contains a promoter sensitive to MTEs and a gene coding for the Green Fluorescent Protein (GFP). MTEs activate the synthesis of GFP, which is a very stable protein, causing the accumulation of GFP inside the cells. Then, fluorescence can be measured by flow cytometry. In this study, two biosensors were investigated: E. coli pPzraPgfp and E. coli pPzntAgfp. The last strain provided a linear response to zinc up to 20 mg/l and a curvilinear response to cadmium up to 0.15 mg/l. No detection was highlighted regarding lead. In practical cases, soils and wastes are contaminated by several types of MTEs. Consequently, combined contaminations were also tested. This work allowed highlighting that the strain E. coli pPzntAgfp can be used to assess the bioavailability of cadmium in soils, although the experimental procedure must be improved. This work is supported by the BioRefine Project, a European project in which various member states focus on recovery of inorganics from organic wastestreams. We gratefully acknowledge the INTERREG IVB NWE programme, which financed the BioRefine Project (ref. 320J-BIOREFINE). [less ▲]

Detailed reference viewed: 64 (7 ULg)
Full Text
See detailWhich P inputs are compatible with a sustainable agriculture at short and long-term?
Renneson, Malorie ULg; Dufey, Joseph; Roisin, Christian et al

Poster (2014, August)

During the past 20 years, there has been a constant reduction in mineral fertilizer use due to price increases and environmental concerns. These changes can lead to a decrease in soil P content, which is ... [more ▼]

During the past 20 years, there has been a constant reduction in mineral fertilizer use due to price increases and environmental concerns. These changes can lead to a decrease in soil P content, which is already observed in some regions in Wallonia. Some new issues are now emerging. Is current cropping systems compatible with yield maintenance? Do organic fertilizers have a similar effect than mineral fertilizers? To answer to these questions, a short-term experiment in controlled conditions and 2 long-term experimental plots were studied. The short-term experiment permitted to study the kinetics of P after an input and differences between fertilizer types, whereas the long-term experiments studied 3 levels of P and K input and different organic compounds. Although an evolution of P content was observed, no difference of yield was found before about 20 years. However, after 47 years, available P levels were considered as low in zero P-input plots and attention must now be focused on these parcels. Zero P-input caused a mean yield decrease of 7%, while a double input increased yield by 2% in comparison to plots with input corresponding to crop export. Thus the zero P-input option is rarely economically profitable in the long-term and providing double the amount of P removed is never financially sustainable. Finally, no difference of P content was observed between organic and mineral fertilizers, except for manure which engendered a higher P content. In conclusion, organic and inorganic fertilizers had a relatively similar effect and overlooking P fertilizer is possible in the short-term but P content has to be followed at the long-term, although yield loss was limited. [less ▲]

Detailed reference viewed: 16 (1 ULg)
Full Text
See detailPrediction of stock and fate of phosphorus forms according to soil classification
Renneson, Malorie ULg; Barbieux, Sophie ULg; Dufey, Joseph et al

Poster (2014, August)

Wallonia presents a high diversity of soils and the fate of P in the soil-plant systems can highly vary from one region to another. The fate of phosphorus depends upon its forms in the solid constituents ... [more ▼]

Wallonia presents a high diversity of soils and the fate of P in the soil-plant systems can highly vary from one region to another. The fate of phosphorus depends upon its forms in the solid constituents of soils, which is seldom characterized. For example, total P determines the soil reserve of P but also the potential P content which can be lost to surface water by erosion but analysis of this parameter is time consuming and rarely performed. This study aims (i) to define functional groups of soils for a differentiate P management, (ii) to estimate total soil P by regression equations based on soil parameters, and (iii) to estimate the quality of these predictions. The study consists in a characterization of 12 parent materials in Wallonia, collected across different land uses. A classification of soils was defined by clustering analysis and 5 groups were defined according to P contents and forms. Using this information in regression improved the quality of predictions. The coefficients of determination vary from 0.83 to 0.99, in comparison to a coefficient of 0.77 for the global regression. Then, pedotransfer functions were validated with an independent external dataset of 55 soils. Estimation of the quality of the prediction of P content (mean error, standard deviation of prediction and root mean square error) was made with global and local regression models. In conclusion, using a soil classification allowed to improve P content assessment by specific regressions and to propose differentiated P management for each group of soils. [less ▲]

Detailed reference viewed: 23 (6 ULg)
Full Text
Peer Reviewed
See detailDiversity of Bacterial Communities in a Profile of a Winter Wheat Field: Known and Unknown Members
Stroobants, Aurore ULg; Degrune, Florine ULg; Olivier, Claire et al

in Microbial Ecology (2014)

In soils, bacteria are very abundant and diverse. They are involved in various agro-ecosystem processes such as the nitrogen cycle, organic matter degradation, and soil formation. Yet, little is known ... [more ▼]

In soils, bacteria are very abundant and diverse. They are involved in various agro-ecosystem processes such as the nitrogen cycle, organic matter degradation, and soil formation. Yet, little is known about the distribution and composition of bacterial communities through the soil profile, particularly in agricultural soils, as most studies have focused only on topsoils or forest and grassland soils. In the present work, we have used bar-coded pyrosequencing analysis of the V3 region of the 16S rRNA gene to analyze bacterial diversity in a profile (depths 10, 25, and 45 cm) of a well-characterized field of winter wheat. Taxonomic assignment was carried out with the Ribosomal Database Project (RDP) Classifier program with three bootstrap scores: a main run at 0.80, a confirmation run at 0.99, and a run at 0 to gain information on the unknown bacteria. Our results show that biomass and bacterial quantity and diversity decreased greatly with depth. Depth also had an impact, in terms of relative sequence abundance, on 81 % of the most represented taxonomic ranks, notably the ranks Proteobacteria, Bacteroidetes, Actinobacteridae, and Acidobacteria. Bacterial community composition differed more strongly between the topsoil (10 and 25 cm) and subsoil (45 cm) than between levels in the topsoil, mainly because of shifts in the carbon, nitrogen, and potassium contents. The subsoil also contained more unknown bacteria, 53.96 % on the average, than did the topsoil, with 42.06 % at 10 cm and 45.59 % at 25 cm. Most of these unknown bacteria seem to belong to Deltaproteobacteria, Actinobacteria, Rhizobiales, and Acidobacteria. [less ▲]

Detailed reference viewed: 62 (21 ULg)