References of "Coheur, P.-F"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMeasurements of hydrogen cyanide (HCN) and acetylene (C2H2) from the Infrared Atmospheric Sounding Interferometer (IASI)
Duflot, V.; Hurtmans, D.; Clarisse, L. et al

in Atmospheric Measurement Techniques (2013), 6

Hydrogen cyanide (HCN) and acetylene (C2H2) are ubiquitous atmospheric trace gases with medium lifetime, which are frequently used as indicators of combustion sources and as tracers for atmospheric ... [more ▼]

Hydrogen cyanide (HCN) and acetylene (C2H2) are ubiquitous atmospheric trace gases with medium lifetime, which are frequently used as indicators of combustion sources and as tracers for atmospheric transport and chemistry. Because of their weak infrared absorption, overlapped by the CO2 Q branch near 720 cm−1, nadir sounders have up to now failed to measure these gases routinely. Taking into account CO2 line mixing, we provide for the first time extensive measurements of HCN and C2H2 total columns at Reunion Island (21° S, 55° E) and Jungfraujoch (46° N, 8° E) in 2009–2010 using observations from the Infrared Atmospheric Sounding Interferometer (IASI). A first order comparison with local ground-based Fourier transform InfraRed (FTIR) measurements has been carried out allowing tests of seasonal consistency which is reasonably captured, except for HCN at Jungfraujoch. The IASI data shows a greater tendency to high C2H2 values. We also examine a nonspecific biomass burning plume over austral Africa and show that the emission ratios with respect to CO agree with previously reported values. [less ▲]

Detailed reference viewed: 86 (5 ULg)
Full Text
Peer Reviewed
See detailValidation of IASI FORLI carbon monoxide retrievals using FTIR data from NDACC
Kerzenmacher, T; Dils, B; Kumps, N et al

in Atmospheric Measurement Techniques (2012), 5

Carbon monoxide (CO) is retrieved daily and globally from space-borne IASI radiance spectra using the Fast Optimal Retrievals on Layers for IASI (FORLI) software developed at the Université Libre de ... [more ▼]

Carbon monoxide (CO) is retrieved daily and globally from space-borne IASI radiance spectra using the Fast Optimal Retrievals on Layers for IASI (FORLI) software developed at the Université Libre de Bruxelles (ULB). The IASI CO total column product for 2008 from the most recent FORLI retrieval version (20100815) is evaluated using correlative CO profile products retrieved from groundbased solar absorption Fourier transform infrared (FTIR) observations at the following FTIR spectrometer sites from the Network for the Detection of Atmospheric Composition Change (NDACC): Ny-Alesund, Kiruna, Bremen, Jungfraujoch, Izana and Wollongong. In order to have good statistics for the comparisons, we included all IASI data from the same day, within a 100 km radius around the ground-based stations. The individual ground-based data were adjusted to the lowest altitude of the co-located IASI CO profiles. To account for the different vertical resolutions and sensitivities of the ground-based and satellite measurements, the averaging kernels associated with the various retrieved products have been used to properly smooth coincident data products. It has been found that the IASI CO total column products compare well on average with the co-located ground-based FTIR total columns at the selected NDACC sites and that there is no significant bias for the mean values at all stations. [less ▲]

Detailed reference viewed: 67 (0 ULg)
Full Text
Peer Reviewed
See detailFirst space-based derivation of the global atmospheric methanol emission fluxes
Stavrakou, T.; Guenther, A.; Razavi, A. et al

in Atmospheric Chemistry and Physics (2011), 11

Detailed reference viewed: 18 (4 ULg)
Full Text
See detailGround-based FTIR measurements at Ile de La Réunion: Observations, error analysis and comparisons with satellite data.
Senten, Cindy; De Mazière, Martine; Hermans, Christian et al

in Geophysical Research Abstracts (2007), 9

Ground-based Fourier-transform infrared (FTIR) spectroscopy is a powerful remote sensing technique to obtain information on the total column abundances and on the vertical distribution of various ... [more ▼]

Ground-based Fourier-transform infrared (FTIR) spectroscopy is a powerful remote sensing technique to obtain information on the total column abundances and on the vertical distribution of various constituents in the atmosphere. Many of these species are essential for the investigation of important atmospheric phenomena, such as the overall greenhouse effect or the stratospheric ozone decrease and recovery. In the frame of the Network for the Detection of Atmospheric Composition Change (NDACC), such observations have been made since many years at several measurement stations for the worldwide long-term monitoring of the atmospheric composition. In this work, we present the results from two short-term FTIR measurement campaigns in 2002 and 2004 at the Ile de La Réunion (21°S, 55°E), a complementary NDACC site in the subtropics, in the Indian Ocean. All spectra were recorded in solar absorption mode. The results discussed here concern the direct greenhouse gases methane (CH4), nitrous oxide (N2O) and ozone (O3), and the indirect greenhouse gases carbon monoxide (CO) and ethane (C2H6), as well as hydrogen cyanide (HCN) and stratospheric hydrogen chloride (HCl), hydrogen fluoride (HF) and nitric acid (HNO3). For the latter species (HCN, HCl, HF and HNO3), we show time series of total column amounts from the surface up to 60 km. For CO, CH4, N2O and O3, it is possible to derive additionally independent information on a few partial columns; these time series are discussed as well. A complete error budget of the retrieval products is given. Temporary mutually correlated enhancements of CO, C2H6and HCN have been observed. They have been traced back to biomass burning events in southern Africa and Madagascar using the FLEXPART model. Comparisons of our retrievals with correlative data from satellite experiments, such as ACE and MOPITT, and with available ozone soundings, show generally good agreements between the different data sets. [less ▲]

Detailed reference viewed: 58 (3 ULg)