References of "Clement, Robert"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailClimate control of terrestrial carbon exchange across biomes and continents
Yi, Chuixiang; Ricciuto, Daniel; Li, Runze et al

in Environmental Research Letters (2010), 5(3),

Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating ... [more ▼]

Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid-and high-latitudes, (2) a strong function of dryness at mid-and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45 degrees N). The sensitivity of NEE to mean annual temperature breaks down at similar to 16 degrees C (a threshold value of mean annual temperature), above which no further increase of CO2 uptake with temperature was observed and dryness influence overrules temperature influence. [less ▲]

Detailed reference viewed: 188 (3 ULg)
Full Text
Peer Reviewed
See detailEstimating nocturnal ecosystem respiration from the vertical turbulent flux and change in storage of CO2
van Gorsel, Eva; Delpierre, Nicolas; Leuning, Ray et al

in Agricultural and Forest Meteorology (2009), 149(11), 1919-1930

Micrometeorological measurements of night time ecosystem respiration can be systematically biased when stable atmospheric conditions lead to drainage flows associated with decoupling of air flow above and ... [more ▼]

Micrometeorological measurements of night time ecosystem respiration can be systematically biased when stable atmospheric conditions lead to drainage flows associated with decoupling of air flow above and within plant canopies. The associated horizontal and vertical advective fluxes cannot be measured using instrumentation on the single towers typically used at micrometeorological sites. A common approach to minimize bias is to use a threshold in friction velocity, u*, to exclude periods when advection is assumed to be important, but this is problematic in situations when in-canopy flows are decoupled from the flow above. Using data from 25 flux stations in a wide variety of forest ecosystems globally, we examine the generality of a novel approach to estimating nocturnal respiration developed by van Gorsel et al. (van Gorsel, E., Leuning, R., Cleugh, H.A., Keith, H., Suni, T., 2007. Nocturnal carbon efflux: reconciliation of eddy covariance and chamber measurements using an alternative to the u*-threshold filtering technique. Tellus 59B, 397-403, Tellus, 59B, 307-403). The approach is based on the assumption that advection is small relative to the vertical turbulent flux (F-C) and change in storage (F-S) of CO2 in the few hours after sundown. The sum of F-C and F-S reach a maximum during this period which is used to derive a temperature response function for ecosystem respiration. Measured hourly soil temperatures are then used with this function to estimate respiration R-Rmax. The new approach yielded excellent agreement with (1) independent measurements using respiration chambers, (2) with estimates using ecosystem light-response curves of F-c + F-s extrapolated to zero light, R-LRC, and (3) with a detailed process-based forest ecosystem model, R-cast. At most sites respiration rates estimated using the u*-filter, R-ust, were smaller than R-Rmax, and R-LRC. Agreement of our approach with independent measurements indicates that R-Rmax, provides an excellent estimate of nighttime ecosystem respiration. (C) 2009 Elsevier B.V. All rights reserved. [less ▲]

Detailed reference viewed: 81 (17 ULg)
See detailUncertainty of carbon dioxide fluxes introduced by different high-pass filtering methods
Ibrom, Andreas; Geißler, Simon; Laffineur, Quentin ULg et al

Conference (2009)

Detailed reference viewed: 14 (5 ULg)
Full Text
Peer Reviewed
See detailPhase And Amplitude Of Ecosystem Carbon Release And Uptake Potentials As Derived From Fluxnet Measurements
Falge, Eva; Tenhunen, John; Baldocchi, Dennis et al

in Agricultural and Forest Meteorology (2002), 113(1-4),

Detailed reference viewed: 14 (5 ULg)