References of "Clement, Benoît"
     in
Bookmark and Share    
See detailOrganocatalyzed ring-opening polymerization of cyclic phosphate monomers
Clement, Benoît ULg; Vanslambrouck, Stéphanie ULg; Koole, Leo H. et al

Conference (2013, November 19)

Detailed reference viewed: 17 (6 ULg)
See detailDrug delivery systems based on amphiphilic polyphosphate-copolymers
Vanslambrouck, Stéphanie ULg; Clement, Benoît ULg; Riva, Raphaël ULg et al

Poster (2013, September 18)

Thanks to their biocompatibility, biodegradability and their structure similar to natural biomacromoleculesn such as nucleic acids, polyphosphates (PPhos) are of prime interest as biomaterials. In ... [more ▼]

Thanks to their biocompatibility, biodegradability and their structure similar to natural biomacromoleculesn such as nucleic acids, polyphosphates (PPhos) are of prime interest as biomaterials. In contrast to poly--caprolactone and polylactides, PPhos properties and functionality are easily tuned via the nature of the pendant group of the starting cyclic monomer. For example, by varying the length of the alkyl chain the hydrophobicity of the PPhos can be adjusted. In this work, an efficient organo-catalytic system was developed to synthesize a series of amphiphilic diblock copolymers, i.e. poly(ethylene oxide)-b-polyphosphate (PEO-b-PPhos) by ring-opening polymerization of cyclic phosphates. This novel approach prevents metallic residues to polute the final product, and which is highly desirable when biomedical applications are foreseen. For drug delivery application, the micellization of these novel diblock copolymers in aqueous media was investigated, as well as, encapsulation of an hydrophobic drug. Data on, the influence of the polyphosphate nature of the polymer on drug loading will be presented. [less ▲]

Detailed reference viewed: 29 (9 ULg)
Full Text
See detailBiomimetic polymers
Clement, Benoît ULg; Vanslambrouck, Stéphanie ULg; Koole, Leo H. et al

Poster (2013, July 08)

Detailed reference viewed: 14 (2 ULg)
See detailRing-opening polymerization of cyclic phosphoesters
Vanslambrouck, Stéphanie ULg; Clement, Benoît ULg; Jérôme, Christine ULg et al

Poster (2012, November 16)

Detailed reference viewed: 28 (4 ULg)
Full Text
See detailSynthesis of new biomimetic and biodegradable polymers for clinical use
Clement, Benoît ULg; Grignard, Bruno ULg; Koole, Leo et al

Conference (2012, November 15)

Detailed reference viewed: 30 (6 ULg)
Full Text
Peer Reviewed
See detailMetal-free strategies for the synthesis of functional and well-defined polyphosphoesters
Clement, Benoît ULg; Grignard, Bruno ULg; Koole, Leo et al

in Macromolecules (2012), 45(11), 4476-4486

We report here metal-free strategies using organocatalysis based on supramolecular recognition for the ring-opening polymerization (ROP) of several cyclic phosphate monomers (CPMs) by a variety of ... [more ▼]

We report here metal-free strategies using organocatalysis based on supramolecular recognition for the ring-opening polymerization (ROP) of several cyclic phosphate monomers (CPMs) by a variety of organocatalysts such as 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 1,5,7-triazabicyclo[4.4.0]undec-5-ene (TBD), and a bicomponent thiourea−tertiary amine catalyst. Each of these catalysts is efficient to produce linear polyphosphoesters (PPEs) from CPMs but with different sensitivity toward transesterification side reactions. The strong basicity of DBU is sufficient to activate an alcohol initiating the polymerization in the absence of any other cocatalyst. Nevertheless, side chain transfer reactions leading to branched and/or cyclic polymeric structures are observed, especially for high monomer conversion. Unlike DBU, TBD is a dual catalyst activating both the alcohol and the monomer. This dual activation allows shorter polymerization time, but SEC analyses of polyphosphates reveal bimodal molecular weight distribution due to chains coupling. Finally, a mixture of DBU and thiourea (TU) appears by far the most efficient catalyst to carry out fast and controlled polymerization while minimizing transesterification reactions, even at near-complete conversion. Compared with polymerizations carried out with Sn(Oct)2 as a metal catalyst, the control of polymerization is much better so that it is possible to prepare polyphosphoesters (PPEs) with molecular weight close to 70 000 g mol−1 and polydispersity index below 1.10. Simultaneous activation by TU of both CPMs and the alcohol group of the initiator by DBU proves to be an effective and robust ROP catalytic system to synthesize polymers with predictable molecular weight and narrow polydispersity. The chain extension experiments through the use of hydroxy end- capped PPEs as macroinitiators confirm the controlled/living nature of the DBU/TU-catalyzed ROP of CPMs and pave the way to the synthesis of block copolymers based on polyphosphates. [less ▲]

Detailed reference viewed: 78 (28 ULg)
See detailSynthesis of new biomimetic biodegradable materials for clinical use
Clement, Benoît ULg; Grignard, Bruno ULg; Lecomte, Philippe ULg et al

Poster (2012, May 10)

For recent decades, the most commonly biodegradable polymers used in clinical and therapeutic applications are aliphatic polyesters such as polyglycolide, polylactide, polycaprolactone and their ... [more ▼]

For recent decades, the most commonly biodegradable polymers used in clinical and therapeutic applications are aliphatic polyesters such as polyglycolide, polylactide, polycaprolactone and their copolymers, mainly due to their excellent biocompatibility and biodegradability properties. However, the lack of functional groups on the backbone of polyesters, which could otherwise be used for tuning physicochemical properties and for introducing bioactive units, limits their further biomedical applications. Polymers with repeating phosphoester bonds in the backbone are structurally versatile and biodegradable through hydrolysis and possibly enzymatic digestion of phosphates linkages under physiological conditions. An advantage of polyphosphoesters (PPEs) compared to aliphatic polyesters is the possible functionalization of side chains due to the patenvalency of the phosphorous atom, allowing the introduction of bioactive molecules and extensive modification of the physical and chemical properties of final material. The Ring-Opening Polymerization (ROP) of cyclic esters is a well-established process to provide linear polyesters with predictable molecular weight, narrow polydispersity and well-defined end-groups. Up to now, metallic compounds are particularly used as initiators or polymerization catalysts to synthetize these materials but metallic derivatives are cytotoxic and a lack of residual metal contaminants is strongly required in view of biomedical applications. To tackle these drawbacks, we developed synthetic approaches that are metal-free (i.e., organocatalytic) using organocatalysis based on supramolecular recognition. A variety of organocatalysts such as 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 1,5,7-triazabicyclo[4.4.0]undec-5-ene (TBD) and a bicomponent thiourea-tertiary amine catalyst were studied. Each of these catalysts is efficient to produce linear polyphosphoesters (PPEs) from cyclic phosphate monomers (CPMs) but with different sensitivity towards transesterification side reactions. Compared with polymerizations carried out with Sn(Oct)2 as a metal catalyst, the control of polymerization is much better so that it is possible to prepare PPEs with molecular weight close to 70000 g.mol-1 and polydispersity index below 1.10. The chain extension experiments through the use of hydroxy end-capped PPEs as macro-initiators confirm the controlled/living nature of organo-catalyzed ROP of CPMs and pave the way to the synthesis of block copolymers based on polyphosphates. Finally, these polymerizations procedures are expected to facilitate the synthesis of well-defined PPEs with various architectures and free of potentially toxic metal remnants. The easy availability of catalysts, the mild conditions of polymerizations and the metal-free nature of the polymerizations makes these catalysts very attractive candidates for the synthesis of PPEs for biomedical applications such as drug and gene delivery, tissue engineering and dental applications. [less ▲]

Detailed reference viewed: 92 (13 ULg)