References of "Clarke, John T"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe multiple spots of the Ganymede auroral footprint
Bonfond, Bertrand ULg; Hess, Sébastien; Bagenal, Fran et al

in Geophysical Research Letters (2013), 40

The interaction between the moons and the magnetosphere of giant planets sometimes gives rise to auroral signatures in the planetary ionosphere, called the satellite footprints. So far, footprints have ... [more ▼]

The interaction between the moons and the magnetosphere of giant planets sometimes gives rise to auroral signatures in the planetary ionosphere, called the satellite footprints. So far, footprints have been detected for Io, Europa, Ganymede, and Enceladus. These footprints are usually seen as single spots. However, the Io footprint, the brightest one, displays a much more complex morphology made of at least three different spots and an extended tail. Here we present Hubble Space Telescope FUV images showing evidence for a second spot in the Ganymede footprint. The spots separation distance changes as Ganymede moves latitudinally in the plasma sheet, as is seen for the Io footprint. This indicates that the processes identified at Io are universal. Moreover, for similar Ganymede System III longitudes, the distance may also vary significantly with time, indicating changes in the plasma sheet density. We identified a rapid evolution of this distance 8 days after the detection of a volcanic outburst at Io, suggesting that such auroral observations could be used to estimate the plasma density variations at Ganymede. [less ▲]

Detailed reference viewed: 47 (13 ULg)
Full Text
Peer Reviewed
See detailHubble observations of Jupiter’s north–south conjugate ultraviolet aurora
Gérard, Jean-Claude ULg; Grodent, Denis ULg; Radioti, Aikaterini ULg et al

in Icarus (2013), 226

Comparisons of the northern and southern far ultraviolet (UV) auroral emissions of Jupiter from the Hubble Space Telescope (HST) or any other ultraviolet imager have mostly been made so far on a ... [more ▼]

Comparisons of the northern and southern far ultraviolet (UV) auroral emissions of Jupiter from the Hubble Space Telescope (HST) or any other ultraviolet imager have mostly been made so far on a statistical basis or were not obtained with high sensitivity and resolution. Such observations are important to discriminate between different mechanisms responsible for the electron acceleration of the different components of the aurora such as the satellite footprints, the «main oval» or the polar emissions. The field of view of the ACS and STIS cameras on board HST is not wide enough to provide images of the full jovian disk. We thus compare the morphology of the north and south aurora observed 55 min apart and we point out similarities and differences. On one occasion HST pointed successively the two polar regions and auroral images were seen separated by only 3 min. This makes it possible to compare the emission structure and the emitted FUV power of corresponding regions. We find that most morphological features identified in one hemisphere have a conjugate counterpart in the other hemisphere. However, the power associated with conjugate regions of the main oval, diffuse or discrete equatoward emission observed quasi-simultaneously may be different in the two hemispheres. It is not directly nor inversely proportional to the strength of the B-field as one might expect for diffuse precipitation or field-aligned acceleration with equal ionospheric electron density in both hemispheres. Finally, the lack of symmetry of some polar emissions suggests that some of them could be located on open magnetic field lines. [less ▲]

Detailed reference viewed: 25 (3 ULg)
Full Text
See detailThe Ganymede auroral footprint: implications of the spots’ multiplicity
Bonfond, Bertrand ULg; Hess, Sébastien; Bagenal, Fran et al

Conference (2013, September 10)

We report here the finding of a secondary spot for the Ganymede auroral footprint on Jupiter. Moreover, we characterize the evolution of the Ganymede footprint morphology with longitude and time. Finally ... [more ▼]

We report here the finding of a secondary spot for the Ganymede auroral footprint on Jupiter. Moreover, we characterize the evolution of the Ganymede footprint morphology with longitude and time. Finally, we discuss the implications of these results with respect to the morphology of the other satellite footprints. [less ▲]

Detailed reference viewed: 12 (2 ULg)
Full Text
See detailJupiter's conjugate ultraviolet aurora
Gérard, Jean-Claude ULg; Grodent, Denis ULg; Radioti, Aikaterini ULg et al

Conference (2013, July)

Detailed reference viewed: 17 (0 ULg)
Full Text
Peer Reviewed
See detailAuroral evidence of Io's control over the magnetosphere of Jupiter
Bonfond, Bertrand ULg; Grodent, Denis ULg; Gérard, Jean-Claude ULg et al

in Geophysical Research Letters (2012), 39

Contrary to the case of the Earth, the main auroral oval on Jupiter is related to the breakdown of plasma corotation in the middle magnetosphere. Even if the root causes for the main auroral emissions are ... [more ▼]

Contrary to the case of the Earth, the main auroral oval on Jupiter is related to the breakdown of plasma corotation in the middle magnetosphere. Even if the root causes for the main auroral emissions are Io's volcanism and Jupiter's fast rotation, changes in the aurora could be attributed either to these internal factors or to fluctuations of the solar wind. Here we show multiple lines of evidence from the aurora for a major internally-controlled magnetospheric reconfiguration that took place in Spring 2007. Hubble Space Telescope far-UV images show that the main oval continuously expanded over a few months, engulfing the Ganymede footprint on its way. Simultaneously, there was an increased occurrence rate of large equatorward isolated auroral features attributed to injection of depleted flux tubes. Furthermore, the unique disappearance of the Io footprint on 6 June appears to be related to the exceptional equatorward migration of such a feature. The contemporary observation of the spectacular Tvashtar volcanic plume by the New-Horizons probe as well as direct measurement of increased Io plasma torus emissions suggest that these dramatic changes were triggered by Io's volcanic activity. [less ▲]

Detailed reference viewed: 30 (15 ULg)
Full Text
See detailJupiter system Ultraviolet Dynamics Explorer (JUDE), an instrument proposed for the ESA-JUICE mission
Grodent, Denis ULg; Bunce, Emma J.; Renotte, Etienne ULg et al

Report (2012)

In the proposal that follows we present a detailed concept for the science case, instrument requirements, technical design, calibration and operations, management structure, and financial plan for the ... [more ▼]

In the proposal that follows we present a detailed concept for the science case, instrument requirements, technical design, calibration and operations, management structure, and financial plan for the Jupiter system Ultraviolet Dynamics Experiment (JUDE), which will provide an outstanding solution to the UV instrumentation requirements for the JUICE mission. The JUDE instrument will represent a novel technical capability in UV instrumentation for planetary science, and will deliver the first true UV imaging capability beyond Earth orbit. The JUDE instrument design consists of two separate channels – the imaging channel (ImaC) and the spectrograph channel (SpeC), neither of which has any moving parts. This simple combination of two autonomous channels allows a true image and a spectrum at FUV wavelengths to be obtained simultaneously, allowing science goals to be realised which are not possible with a traditional scanning-slit imaging-spectrograph design The international consortium assembled to build the JUDE instrument is formed of two institutes from two European countries, and one from the United States. Prof. Denis Grodent (Université de Liège, Belgium) will act as the PI for the entire instrument team and the ULg/CSL team will provide a substantial hardware contribution to the instrument in the form of the optics, coatings, and Data Processing Unit (DPU). Dr Emma Bunce (University of Leicester, UK) will act as Co-PI for the instrument and the UoL team will supply the Micro-Channel Plate (MCP) detectors and read-out electronics. Prof. John Clarke (Co-I) of Boston University, USA will provide the grating element for the spectral channel of the instrument, in addition to instrument calibration activities. The science Co-Is are gathered from multiple institutes/nations including Belgium, UK, Germany, Italy, and the United States (see Part 1 for the full team list). Collectively, the team have decades of expertise in the areas of outer planet magnetospheres, planetary auroral and atmospheric emissions and surface UV observations from multiple platforms including Cassini UVIS, Juno UVS, Hubble Space Telescope, and numerous terrestrial missions. The team also have roles on non-UV instruments which will maximise the interpretation of the JUDE data. The two instrument channels are built on proven and robust technology with much flight heritage (e.g. Juno, Cassini, BepiColombo, IMAGE, ROSAT, Chandra, Voyager, Freja, DE-1, Swift). More specifically, the optics and focal plane detector proposed for the JUDE instrument are widely based on previous designs by CSL, at the ULg and UoL, for the FUV Spectro-Imager on the NASA IMAGE spacecraft, the UV Spectrograph on the NASA Juno mission to Jupiter, and the ROSAT Wide Field Camera. The data return from the instrument will greatly benefit the European and international science communities in planetary and terrestrial sciences, and the knowledge obtained will be generally applicable to broader astrophysics disciplines (e.g. extrasolar planetary physics). In answering the UV science objectives for the JUICE mission the JUDE instrument will clearly address the ESA Cosmic Vision Themes 1: What are the conditions for planet formation and the emergence of life? and 2: How does the Solar System work? The JUDE images (in particular) provide a clear path towards a high-level related programme of education and public outreach which the JUDE team are well equipped and keen to exploit. The JUDE instrument will contribute to all of the UV-related science objectives of JUICE, plus additional science objectives not listed in the Science Requirements Matrix. - At Ganymede and other moons (Europa and Callisto) JUDE will contribute directly to breakthroughs in the following scientific areas: 1) the characterisation of local environment, specifically through the first investigation of the morphology and variation of Ganymede’s aurora. A clear understanding of the auroral and atmospheric emissions at Ganymede will provide vital information on their formation mechanisms and will contribute to studies of the interaction of the Ganymede magnetosphere with Jupiter’s magnetosphere; 2) the first detailed observations of the satellites’ atmospheric (exosphere/ionosphere) composition and structure through measurements of their atmospheric emission and absorption spectra during multiple stellar occultation opportunities; and 3) the study of the satellites surface composition using surface reflectance measurements. The measurements at UV wavelengths are essential because they allow the study of the relationship between the satellites’ surface weathering, their atmospheres and the external environment which is mainly affected by the surrounding Jovian magnetosphere. By carefully studying processes at the surface and in the satellites’ atmospheres together, JUDE will provide the information required to distinguish between two classes of compositional heterogeneities at the satellites’ surfaces: 1) heterogeneities that arise from interaction with the external environment; 2) heterogeneities that arise from dynamical interaction with the subsurface. - With respect to Jupiter, JUDE will: 1) provide “state of the art” measurements of the Jovian atmospheric dynamics and transport through high temporal and spatial resolution auroral imaging; 2) allow a new understanding of the Jovian magnetosphere as a fast rotator through interpretation of the Jovian aurora as direct evidence for the 3D magnetosphere dynamics – a view which is continuously available in the planet’s upper atmosphere (independent of the spacecraft location within the magnetosphere); 3) investigate the magnetosphere as a giant accelerator through observations of the field-aligned current systems responsible for acceleration of electrons (and production of aurora); 4) discover the plasma sources and sinks of the moons through auroral imaging of the moon footprints in Jupiter’s atmosphere as a witness of the electromagnetic interactions taking place; 5) obtain new information on Jupiter’s atmospheric structure and composition through multiple stellar occultation opportunities. In addition, JUDE will make remote observations of the Io torus emissions and will provide the first in situ observation of the variability of the torus, over the lifetime of the mission, providing important information about the internal activity of the moon. JUDE offers a unique opportunity to obtain the first concurrent datasets of the different coupled elements of the Jupiter system: Io's atmosphere, aurora, the plasma torus, the Jovian plasma sheet and the Jovian aurora. The JUDE imaging and spectral channels are both designed to capture FUV lines from sulphur ions in the Io plasma torus. Finally, JUDE’s remote sensing capability offers an exciting opportunity to discover the Europa “plume” activity that may be present, through limb observations during flybys and from more distant observing locations. The Ganymede-focused and moon related science objectives will be addressed in the Ganymede orbit phase and during the multiple moon flybys, whilst the Jupiter science will be predominantly achieved during the Jupiter Equatorial Phases and during the high-inclination phase. The JUDE UV imager and spectrograph will produce discovery level science at Ganymede and the first true 2D UV images from Jupiter orbit. The exceptional JUICE trajectory affords many opportunities for breakthrough science discoveries in accordance with the SciRD; in addition to those, it provides unprecedented opportunities to directly witness the electromagnetic connection between Ganymede and Jupiter by making the first simultaneous UV observations of the respective atmospheres within the JUDE field-of-view. This is possible as a direct consequence of the JUDE true imaging capability. To successfully meet the science requirements outlined above, the JUDE ImaC has a spatial resolution of 20 arcsec over a circular field-of-view with 6˚ diameter, which allows a 100 km spatial resolution on Jupiter from Ganymede orbital distances (and 20 m resolution on Ganymede from 200 km, for example). JUDE’s ImaC mirrors and detector window will be covered with multilayer coatings which efficiently select a narrow bandpass from 130 to 143 nm, to allow measurements of the faint Oxygen lines at 130.4 nm and 135.6 nm in Ganymede’s (and other moon’s) atmosphere. This bandpass also allows observations of the SIV lines (between 140.5 and 142.4 nm) emitted within the Io plasma torus and in Io’s atmosphere. The bright Jovian emissions will also be suppressed within this bandpass which will necessarily limit the count rate to an acceptable level. The Ly-α line at 122 nm will be largely excluded as will the reflected sunlight longward of 150 nm. The sensitivity of the ImaC is 50 Rayleigh (at 3-sigma). The SpeC has a spectral resolution of 0.5 nm in order to meet the requirements of the SciRD, and has a field-of-view which is a 6˚ x 0.1˚ slit co-aligned with, and centred on, the ImaC circular field-of-view. The lower wavelength of the SpeC bandpass is set to ~110 nm in order to include the bright Ly-α line (useful to study the H corona) in a region of reduced transmission. The upper wavelength limit, ~195 nm, is such that transmission is slowly decreasing in the 180-195 nm spectral region, allowing measurements of the moon’s albedos beyond 165 nm, as well as the detection of compounds such as CO2, SO2, O2, O3, H2CO3 and H2O2 by comparing JUDE reflectance spectra to those obtained in laboratory studies. FUV emission lines from S and O are also observable within the bandpass and B-type stars emitting within this waveband will allow occultation experiments to be performed, to determine the composition and structure of the moon’s atmospheres and the detection of a possible Europa plume. The same is true for the Jovian atmosphere for which attenuation by H2 and hydrocarbons allows determination of the atmospheric structure. The sensitivity of the SpeC is 10 R/nm (at 3-sigma). The JUDE instrument channels: ImaC and the co-aligned SpeC, are both operating within the 110–195 nm range. Each channel has independent optics and detector elements, providing a level of redundancy such that loss of either imager or spectrograph does not constitute an entire loss of science. In contrast to more conventional (e.g. scanning or pushbroom) imaging spectrographs, JUDE can provide high time resolution (<1 second) high throughput images over a wide field of view (6° diameter) with no time variation across the field – a capability which is critical in gaining a better understanding of the complex dynamical processes taking place in the Jovian magnetosphere. The primary optic in each channel is a multilayer-coated mirror operating at normal incidence, with flight heritage in the form of the scan mirror in the Ultraviolet Spectrograph (UVS) now en-route to Jupiter onboard JUNO. The imaging channel uses a secondary mirror to of a similar type to focus the image onto the focal plane detector, while in the spectrograph channel, the secondary is a spherical, holographic grating. The spectrograph design is simple, with heritage in airglow spectrographs flown on terrestrial UV missions, and the Imaging UV Spectrograph for MAVEN. The grating element is produced by Jobin-Yvon, who have produced diffraction gratings for major missions including SOHO and HST. Each channel includes an identical microchannel plate (MCP) detector with the robust, radiation-tolerant performance required for a mission in the formidable environment of Jupiter. Such detectors are well proven, having flown on many missions including ROSAT (UoL heritage). They have also operated in the vicinity of Jupiter, in the focal plane of the UV spectrograph onboard the Voyager probes. The detector readout is a new type of capacitive division image charge readout (C-DIR; invented by Dr Jon Lapington) which offers, simultaneously, high spatial resolution and high count rate performance. Adaptive signal processing capabilities allow JUDE to accommodate the very wide dynamic range expected, from observations of Jupiter’s auroral ovals which emit with intensities of mega Rayleighs, to the weak (few tens of Rayleigh) emissions found at Ganymede. The readout structure is simple and robust, and has already been demonstrated in laboratory trials, while the electronics chain has its heritage in particle physics detectors, and has therefore been designed with radiation tolerance as a primary consideration. Pre-launch and in-flight calibrations will be implemented to assure that the JUDE data are suitable for quantitative scientific analysis. The proposed JUDE configuration successfully meets the scientific objectives of the JUICE mission. Our decision to implement an imaging channel instead of covering the MUV waveband increases the whole mission’s scientific output while remaining compliant with the MPDD. Due to its high-temporal resolution read-out system, JUDE is capable of producing volumes of data that are incompatible with the limited telemetry allocated to the UV instrument, even after a modest compression factor is applied. We therefore have proposed a mode of operation (the JUDE reference mode) which takes 1 minute snapshots over an observation opportunity (for example during a flyby sequence). Using this reference mode, and taking the maximum count rate estimates for the various targets, we find that the JUDE data volume is compliant with the tight allocation for the UV instrumentation of 40 GBytes/year The JUDE design presented in this proposal is above the mass allocation. We believe that all components of our design are necessary to reach the scientific goals of JUICE mission and that any major changes (such as the descope of a channel) will be at the considerable expense of the expected science return. However, further optimisation will be performed during the Phase A to bring JUDE into the allocated mass envelope while compromising its scientific return only slightly. We propose an efficient management structure with clearly delineated responsibilities. The Principal Investigator, Prof. Denis Grodent (Be) will take on the responsibilities as specified in the JUICE payload Announcement of Opportunity, supported closely by the Co-PI Dr Emma Bunce (UK) and by the team of Co-Investigators. The contribution of each country is represented by lead Co-Investigators: Prof. John Clarke (Boston University), Dr. Candy Hansen (PSI), and Dr Xianzhe Jia (University of Michigan), and Dr Nigel Bannister (UK) as CoI and Instrument Scientist (see Figure 1 below). The philosophy has been to assign well-defined tasks to each institute with an overall project manager to coordinate the efforts. The Consortium Project Manager (Etienne Renotte, CSL) will execute the managerial tasks relevant to the instrument development. The Product and Quality Assurance management will be implemented by all hardware contributors. Each consortium institute has a local project manager for their respective work packages, reporting to the Consortium Project Manager. The outreach potential of JUDE’s instantaneous wide field images is enormous. The potential PhD students of 2030 who we hope to educate and inspire with JUDE images and spectra are currently 3 years old; their supervisors are in secondary school. The team regards the educational aspects of the instrument and data as particularly important, and we plan a comprehensive JUDE/JUICE programme of outreach to schools and to the public, as part of the project and one which will be initiated upon selection. The national funding agency of Belgium serves as the Lead Funding Agency (LFA) for the JUDE instrument. The letters of endorsement from Belgium and United Kingdom are included in this proposal. Although the agencies endorse their respective national contributions, funding will be secured after the selection of the instrument proposal, according to the usual procedure. [less ▲]

Detailed reference viewed: 82 (16 ULg)
See detailJUDE: A Far-UV Imager for JUICE
Grodent, Denis ULg; Bunce, Emma; Bannister, Nigel et al

Poster (2011, August 31)

Detailed reference viewed: 37 (5 ULg)
Full Text
Peer Reviewed
See detailThe auroral footprint of Enceladus on Saturn
Pryor, Wayne R; Rymer, Abigail M; Mitchell, Donald G et al

in Nature (2011), 472

Although there are substantial differences between the magnetospheres of Jupiter and Saturn, it has been suggested that cryovolcanic activity at Enceladus could lead to electrodynamic coupling between ... [more ▼]

Although there are substantial differences between the magnetospheres of Jupiter and Saturn, it has been suggested that cryovolcanic activity at Enceladus could lead to electrodynamic coupling between Enceladus and Saturn like that which links Jupiter with Io, Europa and Ganymede. Powerful field-aligned electron beams associated with the Io-Jupiter coupling, for example, create an auroral footprint in Jupiter's ionosphere. Auroral ultraviolet emission associated with Enceladus-Saturn coupling is anticipated to be just a few tenths of a kilorayleigh (ref. 12), about an order of magnitude dimmer than Io's footprint and below the observable threshold, consistent with its non-detection. Here we report the detection of magnetic-field-aligned ion and electron beams (offset several moon radii downstream from Enceladus) with sufficient power to stimulate detectable aurora, and the subsequent discovery of Enceladus-associated aurora in a few per cent of the scans of the moon's footprint. The footprint varies in emission magnitude more than can plausibly be explained by changes in magnetospheric parameters--and as such is probably indicative of variable plume activity. [less ▲]

Detailed reference viewed: 18 (5 ULg)
Full Text
Peer Reviewed
See detailThe auroral footprint of Ganymede
Grodent, Denis ULg; Bonfond, Bertrand ULg; Radioti, Aikaterini ULg et al

in Journal of Geophysical Research. Space Physics (2009), 114(A07212),

The interaction of Ganymede with Jupiter's fast rotating magnetospheric plasma gives rise to a current system producing an auroral footprint in Jupiter's ionosphere, usually referred to as the Ganymede ... [more ▼]

The interaction of Ganymede with Jupiter's fast rotating magnetospheric plasma gives rise to a current system producing an auroral footprint in Jupiter's ionosphere, usually referred to as the Ganymede footprint. Based on an analysis of ultraviolet images obtained with the Hubble Space Telescope we demonstrate that the auroral footprint surface matches a circular region in Ganymede's orbital plane having a diameter of 8 to 20 RG. Temporal analysis of the auroral power of Ganymede's footprint reveals variations of different timescales: 1) a 5 hours timescale associated with the periodic flapping of Jupiter's plasma sheet over Ganymede, 2) a 10 to 40 minutes timescale possibly associated with energetic magnetospheric events, such as plasma injections, and 3) a 100 s timescale corresponding to quasi-periodic fluctuations which might relate to bursty reconnections on Ganymede's magnetopause and/or to the recurrent presence of acceleration structures above Jupiter's atmosphere. These three temporal components produce an auroral power emitted at Ganymede's footprint of the order of ~0.2 GW to ~1.5 GW. [less ▲]

Detailed reference viewed: 78 (50 ULg)
Full Text
See detailThe altitude of Saturn’s aurora: implications for the auroral electron energy and location of the polar homopause
Gérard, Jean-Claude ULg; Bonfond, Bertrand ULg; Gustin, Jacques ULg et al

Conference (2008, September 23)

The Space Telescope Imaging Spectrograph (STIS) and the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST) have been used to study the characteristics of Saturn’s FUV aurora ... [more ▼]

The Space Telescope Imaging Spectrograph (STIS) and the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST) have been used to study the characteristics of Saturn’s FUV aurora, which is dominated by the Lyman and Werner bands of H2 and the H Lyman-α line. Images have been analyzed to determine the altitude of the emission above the limb and infer the characteristic energy of the auroral electrons. Our study shows that the peak of the emission is located 1000-1300 km above the limb, indicating that the precipitated electrons are mostly in the 0.1-1 keV energy range, that is significantly less than on Jupiter. Another source of information on the electron energy are the FUV spectra obtained with Voyager UVS (Sandel et al., 1982) and the HST-STIS (Gérard et al., 2004) and Cassini-UVIS spectrographs which only occasionally show a signature of absorption by hydrocarbons. Consequently, the emission is located above but close to the methane homopause. Finally, EUV spectra collected with the FUSE satellite (Gustin et al., 2008) provide information on the H2 column overlying the aurora through analysis of self-absorption and rotational temperature of the emitting layer from the intensity distribution among the H2 lines. If Moses et al. (2000)’s low latitude model is used to convert altitudes into pressure levels, H2 and hydrocarbon columns and temperature, discrepancies appear between the observed temperature, ultraviolet colour ratio and geometric altitude of the emission. One possibility is that the temperature near the homopause sharply increases at a pressure level higher than in the equatorial regions. [less ▲]

Detailed reference viewed: 5 (2 ULg)
See detailThe HST Auroral Campaign Observations of Jupiter and Saturn
Clarke, John T; Nichols, J.; Gérard, Jean-Claude ULg et al

in Bulletin of the American Astronomical Society (2008, September 01)

While the terrestrial aurorae are known to be driven primarily by the interaction of the Earth's magnetosphere with the solar wind, auroral emissions on Jupiter and Saturn are thought to be driven ... [more ▼]

While the terrestrial aurorae are known to be driven primarily by the interaction of the Earth's magnetosphere with the solar wind, auroral emissions on Jupiter and Saturn are thought to be driven primarily by internal processes, with the main energy source being the planetsâ rapid rotation. Limited evidence has suggested there might be some influence of the solar wind on Jupiter's aurorae, and indicated that auroral storms on Saturn can occur at times of solar wind pressure increases. To investigate in detail the dependence of auroral processes on solar wind conditions, a large campaign of observations of these planets has been undertaken using the Hubble Space Telescope, in association with measurements from planetary spacecraft and solar wind conditions both propagated from one AU and measured near each planet. The data indicate a consistent brightening of both the auroral emissions and Saturn Kilometric Radiation (SKR) at Saturn close in time to the arrival of solar wind shocks and pressure increases, consistent with a direct physical relationship between Saturnian auroral processes and solar wind conditions. At Jupiter the situation is less clear, with increases in total auroral power seen near the arrival of solar wind forward shocks, while little increase has been observed near reverse shocks. In addition, auroral dawn storms have been observed when there was little change in solar wind conditions. The data are consistent with some solar wind influence on some Jovian auroral processes, while the auroral activity also varies independently of the solar wind. This extensive data set will serve to constrain theoretical models for the interaction of the solar wind with the magnetospheres of Jupiter and Saturn. [less ▲]

Detailed reference viewed: 12 (2 ULg)
Full Text
See detailObservational evidence of a localized magnetic anomaly near Jupiter’s North Pole
Grodent, Denis ULg; Bonfond, Bertrand ULg; Gérard, Jean-Claude ULg et al

Conference (2008, April 18)

We have analyzed more than 1000 HST/ACS images of Jupiter’s ultraviolet auroral emission in the northern hemisphere. A systematic planet center finding algorithm made it possible to infer reliable and ... [more ▼]

We have analyzed more than 1000 HST/ACS images of Jupiter’s ultraviolet auroral emission in the northern hemisphere. A systematic planet center finding algorithm made it possible to infer reliable and consistent jovicentric location of the auroral footprints of Io, Europa and Ganymede. These footprints form reference contours which provide an absolute magnetic mapping from the ionosphere of Jupiter to the equatorial plane, independent of any magnetic field model. So far, the VIP4 magnetic field model is the most accurate in terms of fitting the auroral emissions. However, it cannot reproduce the distorted shape of the satellites UV footpaths in the “kink region” in the northern ionosphere between S3 longitudes 80 ̊-150 ̊. We show that the model is significantly improved by decreasing the VIP4 surface magnetic field in the kink region and by adding a localized dipolar perturbation field beneath the surface. [less ▲]

Detailed reference viewed: 4 (0 ULg)
Full Text
Peer Reviewed
See detailAuroral current systems in Saturn's magnetosphere: comparison of theoretical models with Cassini and HST observations
Cowley, S. W. H.; Arridge, C. S.; Bunce, E. J. et al

in Annales Geophysicae [= ANGEO] (2008), 26(9), 2613-2630

The first simultaneous observations of fields and plasmas in Saturn's high-latitude magnetosphere and UV images of the conjugate auroral oval were obtained by the Cassini spacecraft and the Hubble Space ... [more ▼]

The first simultaneous observations of fields and plasmas in Saturn's high-latitude magnetosphere and UV images of the conjugate auroral oval were obtained by the Cassini spacecraft and the Hubble Space Telescope (HST) in January 2007. These data have shown that the southern auroral oval near noon maps to the dayside cusp boundary between open and closed field lines, associated with a major layer of upward-directed field-aligned current (Bunce et al., 2008). The results thus support earlier theoretical discussion and quantitative modelling of magnetosphere-ionosphere coupling at Saturn (Cowley et al., 2004), that suggests the oval is produced by electron acceleration in the field-aligned current layer required by rotational flow shear between strongly sub-corotating flow on open field lines and near-corotating flow on closed field lines. Here we quantitatively compare these modelling results (the 'CBO' model) with the Cassini-HST data set. The comparison shows good qualitative agreement between model and data, the principal difference being that the model currents are too small by factors of about five, as determined from the magnetic perturbations observed by Cassini. This is suggested to be principally indicative of a more highly conducting summer southern ionosphere than was assumed in the CBO model. A revised model is therefore proposed in which the height-integrated ionospheric Pedersen conductivity is increased by a factor of four from 1 to 4 mho, together with more minor adjustments to the co-latitude of the boundary, the flow shear across it, the width of the current layer, and the properties of the source electrons. It is shown that the revised model agrees well with the combined Cassini-HST data, requiring downward acceleration of outer magnetosphere electrons through a similar to 10 kV potential in the current layer at the open-closed field line boundary to produce an auroral oval of similar to 1 degrees width with UV emission intensities of a few tens of kR. [less ▲]

Detailed reference viewed: 50 (22 ULg)
Full Text
Peer Reviewed
See detailAuroral evidence of a localized magnetic anomaly in Jupiter's northern hemisphere
Grodent, Denis ULg; Bonfond, Bertrand ULg; Gérard, Jean-Claude ULg et al

in Journal of Geophysical Research (2008), 113(A9),

We analyze more than 1000 HST/Advanced Camera for Survey images of the ultraviolet auroral emissions appearing in the northern hemisphere of Jupiter. The auroral footprints of Io, Europa, and Ganymede ... [more ▼]

We analyze more than 1000 HST/Advanced Camera for Survey images of the ultraviolet auroral emissions appearing in the northern hemisphere of Jupiter. The auroral footprints of Io, Europa, and Ganymede form individual footpaths, which are fitted with three reference contours. The satellite footprints provide a convenient mapping between the northern Jovian ionosphere and the equatorial plane in the middle magnetosphere, independent of any magnetic field model. The VIP4 magnetic field model is in relatively good agreement with the observed footprint of Io. However, in the auroral kink sector, between the 80 degrees and 150 degrees System III meridians, the model significantly departs from the observation. One possible way to improve the agreement between the VIP4 model and the observed footprints is to include a magnetic anomaly. We suggest that this anomaly is characterized by a weakening of the surface magnetic field in the kink sector and by an added localized tilted dipole field. This dipole rotates with the planet at a depth of 0.245 R-J below the surface, and its magnitude is set to similar to 1% of Jupiter's dipole moment. The anomaly has a very limited influence on the magnetic field intensity in the equatorial plane between the orbits of Io and Ganymede. However, it is sufficient to bend the field lines near the high-latitude atmosphere and to reproduce the observed satellite ultraviolet footpaths. JUNO's in situ measurements will determine the structure of Jupiter's magnetic field in detail to expand on these results. [less ▲]

Detailed reference viewed: 67 (32 ULg)
Full Text
Peer Reviewed
See detailResponse of Jupiter's UV auroras to interplanetary conditions as observed by the Hubble Space Telescope during the Cassini flyby campaign
Nichols, J. D.; Bunce, E. J.; Clarke, John T. et al

in Journal of Geophysical Research. Space Physics (2007), 112(A2),

We provide a first detailed discussion of the relation between the set of Jovian UV auroral images observed by the Hubble Space Telescope ( HST) in December 2000 to January 2001 and simultaneous ... [more ▼]

We provide a first detailed discussion of the relation between the set of Jovian UV auroral images observed by the Hubble Space Telescope ( HST) in December 2000 to January 2001 and simultaneous interplanetary data obtained by Cassini during its Jupiter flyby. Examination of the interplanetary data surrounding all seven HST observation intervals shows that by chance six of them correspond to solar wind rarefaction regions, which follow compressions by periods of similar to 2 to similar to 6 days. Only one imaging interval, on 13 January 2001, corresponds to a compression region of generally elevated, but highly variable, solar wind dynamic pressure and interplanetary field strength. We have thus first examined the images corresponding to rarefaction regions in order to establish the range of behaviors that occur under these known conditions, which then act as a benchmark against which the compression region images can be compared. The rarefaction region images show relatively consistent properties of the main oval auroras, though differing in detail from interval to interval. The polar auroras show more variability, with the patchy ("swirl") auroras in the central region sometimes forming a diffuse ring structure and at other times being more uniformly distributed, while the "active region" auroras at dusk vary markedly from weak emissions to bright arc-like forms, the latter possibly being associated with intervals within similar to 2 - 3 days of a previous solar wind compression. The two images obtained in the compression region on 13 January 2001 then show remarkably different properties in all the auroral components. The main oval is found to be brighter over its whole length by factors of two to three compared with the rarefaction region images, while its position remains essentially unchanged, close to the usual reference oval. However, bright contiguous "active region" auroras in the postnoon and dusk sector then widen the overall auroral distribution in that sector by up to similar to 5 degrees in the poleward direction. The region of patchy polar auroras is also found to expand to cover essentially the whole of the remaining area of the polar cap, with a much-narrowed darker zone just poleward of the main oval in the dawn and prenoon sector. We discuss whether these enhanced emissions are characteristic of the few-day compression region as a whole or of more localized conditions occurring within the compression region and conclude that the latter is more likely. Examination of the relevant interplanetary data then shows that the brightened images are associated with an interval of significant magnetospheric dynamics, involving a modest compression of the magnetosphere followed by an extended major expansion. [less ▲]

Detailed reference viewed: 17 (5 ULg)
Full Text
Peer Reviewed
See detailThe Cassini Campaign observations of the Jupiter aurora by the Ultraviolet Imaging Spectrograph and the Space Telescope Imaging Spectrograph
Ajello, Joseph M.; Pryor, Wayne; Esposito, Larry et al

in Icarus (2005), 178(2), 327-345

We have analyzed the Cassini Ultraviolet Imaging, Spectrometer (UVIS) observations of the Jupiter aurora with an auroral atmosphere two-stream electron transport code. The observations Of Jupiter by UVIS ... [more ▼]

We have analyzed the Cassini Ultraviolet Imaging, Spectrometer (UVIS) observations of the Jupiter aurora with an auroral atmosphere two-stream electron transport code. The observations Of Jupiter by UVIS took place during the Cassini Campaign. The Cassini Campaign included Support spectral and imaging observations by the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS). A major result for the UVIS observations was the identification of a large color variation between the far ultraviolet (FUV: 1100-1700 angstrom) and extreme ultraviolet (EUV: 800-1100 angstrom) spectral regions. This change probably occurs because of a large variation in the ratio of the soft electron flux (10-3000 eV) responsible for the EUV aurora to the hard electron flux (similar to 15-22 keV) responsible for the FUV aurora. On the basis of this result a new color ratio for integrated intensities for EUV and FUV was defined (4 pi I1550-1620 angstrom/4 pi I (1030-1150 angstrom)) which varied by approximately a factor of 6. The FUV color ratio (4 pi I (1550-1620) angstrom/4 pi (1230-1300) (angstrom)) was note stable with a variation of less than 50% for the observations studied. The medium resolution (0.9 angstrom FWHM, G140M grating) FUV observations (1295-1345 angstrom and 1495-1540 angstrom) by STIS on 13 January 2001, on the other hand, were analyzed by a spectral modeling technique using a recently developed high-spectral resolution model for the electron-excited H-2 rotational lines. The STIS FUV data were analyzed with a model that considered the Lyman band spectrum (B (1) Sigma(u)(+) -> X-1 Sigma(g)(+)) as composed of an allowed direct excitation component (X-1 Sigma(g)(+) B-1 (+)(Sigma u)) and an optically forbidden component (X-1 Sigma(g)(+) -> EF, GK, H (H) over bar,.... (1)Sigma(u)(+) followed by the cascade transition (1)Sigma -> B-1 Sigma(u)(+)). The medium-resolution spectral regions for the Jupiter aurora were carefully chosen to emphasize the cascade component. The ratio of the two components is a direct measurement of the mean secondary electron energy of the aurora. The mean secondary electron energy of the aurora varies between 50 and 200 eV for the polar cap, limb and auroral oval observations. We examine a long time base of Galileo Ultraviolet Spectrometer color ratios from the standard mission (1996-1998) and compare them to Cassini UVIS, HST, and International Ultraviolet Explorer (IUE) observations. (c) 2005 Elsevier Inc. All rights reserved. [less ▲]

Detailed reference viewed: 49 (16 ULg)
Full Text
Peer Reviewed
See detailCassini UVIS observations of Jupiter's auroral variability
Pryor, Wayne R.; Stewart, A. Ian F.; Esposito, Larry W. et al

in Icarus: International Journal of Solar System Studies (2005), 178(2), 312-326

The Cassini spacecraft Ultraviolet Imaging Spectrograph (UVIS) obtained observations of Jupiter's auroral emissions in H-2 band systems and H Lyman-alpha from day 275 of 2000 (October 1), to day 81 of ... [more ▼]

The Cassini spacecraft Ultraviolet Imaging Spectrograph (UVIS) obtained observations of Jupiter's auroral emissions in H-2 band systems and H Lyman-alpha from day 275 of 2000 (October 1), to day 81 of 2001 (March 22). Much of the globally integrated auroral variability measured with UVIS can be explained simply in terms of the rotation of Jupiter's main auroral arcs with the planet. These arcs were also imaged by the Space Telescope Imaging Spectrograph (STIS) on Hubble Space Telescope (HST). However, several brightening events were seen by UVIS in which the global auroral output increased by a factor of 2-4. These events persisted over a number of hours and in one case can clearly be tied to a large solar coronal mass ejection event. The auroral UV emissions from these bursts also correspond to hectometric radio emission (0.5-16 MHz) increases reported by the Galileo Plasma Wave Spectrometer (PWS) and Cassim Radio and Plasma Wave Spectrometer (RPWS) experiments. In general, the hectometric radio data vary differently with longitude than the UV data because of radio wave beaming effects. The 2 largest events in the UVIS data were on 2000 day 280 (October 6) and on 2000 days 325-326 (November 20-21). The global brightening events on November 20-21 are compared with corresponding data on the interplanetary magnetic field, solar wind conditions, and energetic particle environment. ACE (Advanced Composition Explorer) solar wind data was numerically propagated from the Earth to Jupiter with an MHD code and compared to the observed event. A second class of brief auroral brightening events seen in HST (and probably UVIS) data that last for similar to 2 min is associated with aurora] flares inside the main auroral ovals. On January 8, 2001, from 18:45-19:35 UT UVIS H-2 band emissions from the north polar region varied quasiperiodically. The varying emissions, probably due to amoral flares inside the main auroral oval, are correlated with low-frequency quasiperiodic radio bursts in the 0.6-5 kHz Galileo PWS data. (c) 2005 Elsevier Inc. All rights reserved. [less ▲]

Detailed reference viewed: 44 (12 ULg)
Full Text
Peer Reviewed
See detailSignature of Saturn's auroral cusp: Simultaneous Hubble Space Telescope FUV observations and upstream solar wind monitoring
Gérard, Jean-Claude ULg; Bunce, Emma J; Grodent, Denis ULg et al

in Journal of Geophysical Research. Space Physics (2005), 110

Model simulations by Bunce et al. (2005a) have shown that direct precipitation of electrons in Saturn's dayside cusp regions is not capable of producing significant FUV aurora. Instead, they suggested the ... [more ▼]

Model simulations by Bunce et al. (2005a) have shown that direct precipitation of electrons in Saturn's dayside cusp regions is not capable of producing significant FUV aurora. Instead, they suggested the possibility that the FUV bright emissions sometimes observed near noon are associated with reconnection occurring at the dayside magnetopause, possibly pulsed, analogous to flux transfer events seen at the Earth. Pulsed reconnection at the low-latitude dayside magnetopause when the IMF is directed northward (antiparallel to Saturn's magnetic field lines) is expected to give rise to pulsed twin-vortical flows in the magnetosphere and hence to bipolar field-aligned currents centered in the vortical flows closing in ionospheric Pedersen current. In the case of southward IMF and high-latitude lobe reconnection the model predicts that the vortical flows are displaced poleward of the open-closed field line boundary with reversed field-aligned currents compared with the former case. During January 2004, a unique campaign took place during which magnetic field and plasma instruments on board the Cassini-Huygens spacecraft measured the in situ solar wind and embedded interplanetary magnetic field while the Hubble Space Telescope simultaneously observed the far ultraviolet aurora in Saturn's southern hemisphere. The IMF was highly structured during this interval. The electric potential at Cassini is estimated from solar wind magnetic field and velocity measurements for the case of low-latitude or lobe reconnection. We show that a dayside FUV signature of intense electron precipitation is found poleward of or along the main oval during a period of minor compression period when the dayside reconnection voltage is estimated to be ~30-100 kV. Overall, we find that the conceptual model of Bunce et al. (2005a) provides a good estimate of the UV brightness and power for the case of northward IMF but somewhat underestimates the power for the southward IMF case, except if the speed of the vortical flow is larger than its value in the nominal model. [less ▲]

Detailed reference viewed: 10 (1 ULg)
Full Text
Peer Reviewed
See detailAn Earth-like correspondence between Saturn's auroral features and radio emission
Kurth, William S.; Gurnett, Donald A.; Clarke, John T. et al

in Nature (2005), 433(7027), 722-725

Saturn is a source of intense kilometre-wavelength radio emissions that are believed to be associated with its polar aurorae(1,2), and which provide an important remote diagnostic of its magnetospheric ... [more ▼]

Saturn is a source of intense kilometre-wavelength radio emissions that are believed to be associated with its polar aurorae(1,2), and which provide an important remote diagnostic of its magnetospheric activity. Previous observations implied that the radio emission originated in the polar regions, and indicated a strong correlation with solar wind dynamic pressure(1,3-7). The radio source also appeared to be fixed near local noon and at the latitude of the ultraviolet aurora(1,2). There have, however, been no observations relating the radio emissions to detailed auroral structures. Here we report measurements of the radio emissions, which, along with high-resolution images of Saturn's ultraviolet auroral emissions(8), suggest that although there are differences in the global morphology of the aurorae, Saturn's radio emissions exhibit an Earth-like correspondence between bright auroral features and the radio emissions. This demonstrates the universality of the mechanism that results in emissions near the electron cyclotron frequency narrowly beamed at large angles to the magnetic field(9,10). [less ▲]

Detailed reference viewed: 958 (15 ULg)
Full Text
Peer Reviewed
See detailSolar wind dynamic pressure and electric field as the main factors controlling Saturn's aurorae
Crary, Frank J.; Clarke, John T.; Dougherty, Michele K. et al

in Nature (2005), 433(7027), 720-722

The interaction of the solar wind with Earth's magnetosphere gives rise to the bright polar aurorae and to geomagnetic storms(1), but the relation between the solar wind and the dynamics of the outer ... [more ▼]

The interaction of the solar wind with Earth's magnetosphere gives rise to the bright polar aurorae and to geomagnetic storms(1), but the relation between the solar wind and the dynamics of the outer planets' magnetospheres is poorly understood. Jupiter's magnetospheric dynamics and aurorae are dominated by processes internal to the jovian system(2), whereas Saturn's magnetosphere has generally been considered to have both internal and solar-wind-driven processes. This hypothesis, however, is tentative because of limited simultaneous solar wind and magnetospheric measurements. Here we report solar wind measurements, immediately upstream of Saturn, over a one-month period. When combined with simultaneous ultraviolet imaging(3) we find that, unlike Jupiter, Saturn's aurorae respond strongly to solar wind conditions. But in contrast to Earth, the main controlling factor appears to be solar wind dynamic pressure and electric field, with the orientation of the interplanetary magnetic field playing a much more limited role. Saturn's magnetosphere is, therefore, strongly driven by the solar wind, but the solar wind conditions that drive it differ from those that drive the Earth's magnetosphere. [less ▲]

Detailed reference viewed: 47 (13 ULg)