References of "Chiew, Y. S"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailVisualisation of Time-Variant Respiratory System Elastance in ARDS Models.
Van Drunen, E. J.; Chiew, Y. S.; Zhao, Z. et al

in Biomedizinische Technik. Biomedical engineering (2013), 58(suppl 1)

Detailed reference viewed: 8 (0 ULg)
Full Text
Peer Reviewed
See detailPhysiological relevance and performance of a minimal lung model -- an experimental study in healthy and acute respiratory distress syndrome model piglets
Chiew, Y. S.; Chase, J. G.; LAMBERMONT, Bernard ULg et al

in BMC Pulmonary Medicine (2012), 12:59

Background: Mechanical ventilation (MV) is the primary form of support for acute respiratory distress syndrome (ARDS) patients. However, intra- and inter- patient-variability reduce the efficacy of ... [more ▼]

Background: Mechanical ventilation (MV) is the primary form of support for acute respiratory distress syndrome (ARDS) patients. However, intra- and inter- patient-variability reduce the efficacy of general protocols. Model-based approaches to guide MV can be patient-specific. A physiological relevant minimal model and its patient-specific performance are tested to see if it meets this objective above. Methods: Healthy anesthetized piglets weighing 24.0 kg [IQR: 21.0-29.6] underwent a step-wise PEEP increase manoeuvre from 5cmH2O to 20cmH2O. They were ventilated under volume control using Engstrom Care Station (Datex, General Electric, Finland), with pressure, flow and volume profiles recorded. ARDS was then induced using oleic acid. The data were analyzed with a Minimal Model that identifies patient-specific mean threshold opening and closing pressure (TOP and TCP), and standard deviation (SD) of these TOP and TCP distributions. The trial and use of data were approved by the Ethics Committee of the Medical Faculty of the University of Liege, Belgium.Results and discussions3 of the 9 healthy piglets developed ARDS, and these data sets were included in this study. Model fitting error during inflation and deflation, in healthy or ARDS state is less than 5.0% across all subjects, indicating that the model captures the fundamental lung mechanics during PEEP increase. Mean TOP was 42.4cmH2O [IQR: 38.2-44.6] at PEEP = 5cmH2O and decreased with PEEP to 25.0cmH2O [IQR: 21.5-27.1] at PEEP = 20cmH2O. In contrast, TCP sees a reverse trend, increasing from 10.2cmH2O [IQR: 9.0-10.4] to 19.5cmH2O [IQR: 19.0-19.7]. Mean TOP increased from average 21.2-37.4cmH2O to 30.4-55.2cmH2O between healthy and ARDS subjects, reflecting the higher pressure required to recruit collapsed alveoli. Mean TCP was effectively unchanged. Conclusion: The minimal model is capable of capturing physiologically relevant TOP, TCP and SD of both healthy and ARDS lungs. The model is able to track disease progression and the response to treatment. [less ▲]

Detailed reference viewed: 32 (5 ULg)
Full Text
Peer Reviewed
See detailNAVA enhances tidal volume and diaphragmatic electro-myographic activity matching: a Range90 analysis of supply and demand
Moorhead, K. T.; Piquilloud, L.; LAMBERMONT, Bernard ULg et al

in Journal of Clinical Monitoring and Computing (2012)

Neurally adjusted ventilatory assist (NAVA) is a ventilation assist mode that delivers pressure in proportionality to electrical activity of the diaphragm (Eadi). Compared to pressure support ventilation ... [more ▼]

Neurally adjusted ventilatory assist (NAVA) is a ventilation assist mode that delivers pressure in proportionality to electrical activity of the diaphragm (Eadi). Compared to pressure support ventilation (PS), it improves patient-ventilator synchrony and should allow a better expression of patient's intrinsic respiratory variability. We hypothesize that NAVA provides better matching in ventilator tidal volume (Vt) to patients inspiratory demand. 22 patients with acute respiratory failure, ventilated with PS were included in the study. A comparative study was carried out between PS and NAVA, with NAVA gain ensuring the same peak airway pressure as PS. Robust coefficients of variation (CVR) for Eadi and Vt were compared for each mode. The integral of Eadi (sh{phonetic}Eadi) was used to represent patient's inspiratory demand. To evaluate tidal volume and patient's demand matching, Range90 = 5-95 % range of the Vt/sh{phonetic}Eadi ratio was calculated, to normalize and compare differences in demand within and between patients and modes. In this study, peak Eadi and sh{phonetic}Eadi are correlated with median correlation of coefficients, R > 0.95. Median sh{phonetic}Eadi, Vt, neural inspiratory time (Ti_ <br /> Neural), inspiratory time (Ti) and peak inspiratory pressure (PIP) were similar in PS and NAVA. However, it was found that individual patients have higher or smaller sh{phonetic}Eadi, Vt, Ti_ <br /> Neural, Ti and PIP. CVR analysis showed greater Vt variability for NAVA (p < 0.005). Range90 was lower for NAVA than PS for 21 of 22 patients. NAVA provided better matching of Vt to sh{phonetic}Eadi for 21 of 22 patients, and provided greater variability Vt. These results were achieved regardless of differences in ventilatory demand (Eadi) between patients and modes. © 2012 Springer Science+Business Media New York. [less ▲]

Detailed reference viewed: 27 (6 ULg)
Full Text
Peer Reviewed
See detailModel-based PEEP optimisation in mechanical ventilation
Chiew, Y. S.; Chase, J. G.; Shaw, G. M. et al

in BioMedical Engineering OnLine (2011), 10

Background: Acute Respiratory Distress Syndrome (ARDS) patients require mechanical ventilation (MV) for breathing support. Patient-specific PEEP is encouraged for treating different patients but there is ... [more ▼]

Background: Acute Respiratory Distress Syndrome (ARDS) patients require mechanical ventilation (MV) for breathing support. Patient-specific PEEP is encouraged for treating different patients but there is no well established method in optimal PEEP selection.Methods: A study of 10 patients diagnosed with ALI/ARDS whom underwent recruitment manoeuvre is carried out. Airway pressure and flow data are used to identify patient-specific constant lung elastance (E <br /> lung) and time-variant dynamic lung elastance (E <br /> drs) at each PEEP level (increments of 5cmH <br /> 2O), for a single compartment linear lung model using integral-based methods. Optimal PEEP is estimated using E <br /> lungversus PEEP, E <br /> drs-Pressure curve and E <br /> drsArea at minimum elastance (maximum compliance) and the inflection of the curves (diminishing return). Results are compared to clinically selected PEEP values. The trials and use of the data were approved by the New Zealand South Island Regional Ethics Committee.Results: Median absolute percentage fitting error to the data when estimating time-variant E <br /> drsis 0.9% (IQR = 0.5-2.4) and 5.6% [IQR: 1.8-11.3] when estimating constant E <br /> lung. Both E <br /> lungand E <br /> drsdecrease with PEEP to a minimum, before rising, and indicating potential over-inflation. Median E <br /> drsover all patients across all PEEP values was 32.2 cmH <br /> 2O/l [IQR: 26.1-46.6], reflecting the heterogeneity of ALI/ARDS patients, and their response to PEEP, that complicates standard approaches to PEEP selection. All E <br /> drs-Pressure curves have a clear inflection point before minimum E <br /> drs, making PEEP selection straightforward. Model-based selected PEEP using the proposed metrics were higher than clinically selected values in 7/10 cases.Conclusion: Continuous monitoring of the patient-specific E <br /> lungand E <br /> drsand minimally invasive PEEP titration provide a unique, patient-specific and physiologically relevant metric to optimize PEEP selection with minimal disruption of MV therapy. © 2011 Chiew et al; licensee BioMed Central Ltd. [less ▲]

Detailed reference viewed: 27 (11 ULg)