References of "Chelli, A"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailOptimized fringe sensors for the VLTI next generation instruments
Blind, N.; Absil, Olivier ULg; Le Bouquin, J.-B. et al

in Astronomy and Astrophysics (2011), 530

Context. With the arrival of the next generation of ground-based imaging interferometers combining from four to possibly six telescopes simultaneously, there is also a strong need for a new generation of ... [more ▼]

Context. With the arrival of the next generation of ground-based imaging interferometers combining from four to possibly six telescopes simultaneously, there is also a strong need for a new generation of fringe trackers able to cophase these arrays. These instruments have to be very sensitive and to provide robust operations in quickly varying observational conditions. <BR /> Aims: We aim at defining the optimal characteristics of fringe sensor concepts operating with four or six telescopes. The current detector limitations lead us to consider solutions based on co-axial pairwise combination schemes. <BR /> Methods: We independently study several aspects of the fringe sensing process: 1) how to measure the phase and the group delay, and 2) how to combine the telescopes to ensure a precise and robust fringe tracking in real conditions. Thanks to analytical developments and numerical simulations, we define the optimal fringe-sensor concepts and compute the expected performance of the four-telescope one with our dedicated end-to-end simulation tool sim2GFT. <BR /> Results: We first show that measuring the phase and the group delay by obtaining the data in several steps (i.e. by temporally modulating the optical path difference) is extremely sensitive to atmospheric turbulence and therefore conclude that it is better to obtain the fringe position with a set of data obtained simultaneously. Subsequently, we show that among all co-axial pairwise schemes, moderately redundant concepts increase the sensitivity as well as the robustness in various atmospheric or observing conditions. Merging all these results, end-to-end simulations show that our four-telescope fringe sensor concept is able to track fringes at least 90% of the time up to limiting magnitudes of 7.5 and 9.5 for the 1.8- and 8.2-meter VLTI telescopes respectively. [less ▲]

Detailed reference viewed: 12 (1 ULg)
Full Text
Peer Reviewed
See detailDarwin-A Mission to Detect and Search for Life on Extrasolar Planets
Cockell, C. S.; Léger, A.; Fridlund, M. et al

in Astrobiology (2009), 9(1)

The discovery of extrasolar planets is one of the greatest achievements of modern astronomy. The detection of planets that vary widely in mass demonstrates that extrasolar planets of low mass exist. In ... [more ▼]

The discovery of extrasolar planets is one of the greatest achievements of modern astronomy. The detection of planets that vary widely in mass demonstrates that extrasolar planets of low mass exist. In this paper, we describe a mission, called Darwin, whose primary goal is the search for, and characterization of, terrestrial extrasolar planets and the search for life. Accomplishing the mission objectives will require collaborative science across disciplines, including astrophysics, planetary sciences, chemistry, and microbiology. Darwin is designed to detect rocky planets similar to Earth and perform spectroscopic analysis at mid-infrared wavelengths (6-20 mum), where an advantageous contrast ratio between star and planet occurs. The baseline mission is projected to last 5 years and consists of approximately 200 individual target stars. Among these, 25-50 planetary systems can be studied spectroscopically, which will include the search for gases such as CO[SUB]2[/SUB], H[SUB]2[/SUB]O, CH[SUB]4[/SUB], and O[SUB]3[/SUB]. Many of the key technologies required for the construction of Darwin have already been demonstrated, and the remainder are estimated to be mature in the near future. Darwin is a mission that will ignite intense interest in both the research community and the wider public. [less ▲]

Detailed reference viewed: 183 (18 ULg)
Full Text
Peer Reviewed
See detailPEGASE, an infrared interferometer to study stellar environments and low mass companions around nearby stars
Ollivier, M.; Absil, Olivier ULg; Allard, F. et al

in Experimental Astronomy (2009), 23

PEGASE is a mission dedicated to the exploration of the environment (including habitable zone) of young and solar-type stars (particularly those in the DARWIN catalogue) and the observation of low mass ... [more ▼]

PEGASE is a mission dedicated to the exploration of the environment (including habitable zone) of young and solar-type stars (particularly those in the DARWIN catalogue) and the observation of low mass companions around nearby stars. It is a space interferometer project composed of three free flying spacecraft, respectively featuring two 40 cm siderostats and a beam combiner working in the visible and near infrared. It has been proposed to ESA as an answer to the first ``Cosmic Vision'' call for proposals, as an M mission. The concept also enables full-scale demonstration of space nulling interferometry operation for DARWIN. [less ▲]

Detailed reference viewed: 68 (9 ULg)
Full Text
See detailMilli-arcsecond Astrophysics with VSI, the VLTI Spectro-imager in the ELT Era
Malbet, F.; Buscher, D.; Weigelt, G. et al

in Moorwood, Alan (Ed.) Science with the VLT in the ELT Era (2009)

Nowadays, compact sources relatively warm like surfaces of nearby stars, circumstellar environments of stars from early stages to the most evolved ones and surroundings of active galactic nuclei can be ... [more ▼]

Nowadays, compact sources relatively warm like surfaces of nearby stars, circumstellar environments of stars from early stages to the most evolved ones and surroundings of active galactic nuclei can be investigated at milli-arcsecond scales only with the VLT in its interferometric mode. We propose a spectro-imager, named VSI (VLTI spectro-imager), which is capable to probe these sources both over spatial and spectral scales in the near-infrared domain. This instrument will provide information complementary to what is obtained at the same time with ALMA at different wavelengths and the extreme large telescopes. [less ▲]

Detailed reference viewed: 61 (12 ULg)
Full Text
See detailVSI: the VLTI spectro-imager
Malbet, F.; Buscher, D.; Weigelt, G. et al

in Schöller, Markus; Danchi, William; Delplancke, Françoise (Eds.) Optical and Infrared Interferometry (2008, July 01)

The VLTI Spectro Imager (VSI) was proposed as a second-generation instrument of the Very Large Telescope Interferometer providing the ESO community with spectrally-resolved, near-infrared images at ... [more ▼]

The VLTI Spectro Imager (VSI) was proposed as a second-generation instrument of the Very Large Telescope Interferometer providing the ESO community with spectrally-resolved, near-infrared images at angular resolutions down to 1.1 milliarcsecond and spectral resolutions up to R = 12000. Targets as faint as K = 13 will be imaged without requiring a brighter nearby reference object; fainter targets can be accessed if a suitable reference is available. The unique combination of high-dynamic-range imaging at high angular resolution and high spectral resolution enables a scientific program which serves a broad user community and at the same time provides the opportunity for breakthroughs in many areas of astrophysics. The high level specifications of the instrument are derived from a detailed science case based on the capability to obtain, for the first time, milliarcsecond-resolution images of a wide range of targets including: probing the initial conditions for planet formation in the AU-scale environments of young stars; imaging convective cells and other phenomena on the surfaces of stars; mapping the chemical and physical environments of evolved stars, stellar remnants, and stellar winds; and disentangling the central regions of active galactic nuclei and supermassive black holes. VSI will provide these new capabilities using technologies which have been extensively tested in the past and VSI requires little in terms of new infrastructure on the VLTI. At the same time, VSI will be able to make maximum use of new infrastructure as it becomes available; for example, by combining 4, 6 and eventually 8 telescopes, enabling rapid imaging through the measurement of up to 28 visibilities in every wavelength channel within a few minutes. The current studies are focused on a 4-telescope version with an upgrade to a 6-telescope one. The instrument contains its own fringe tracker and tip-tilt control in order to reduce the constraints on the VLTI infrastructure and maximize the scientific return. [less ▲]

Detailed reference viewed: 66 (7 ULg)
Full Text
See detailSystem overview of the VLTI Spectro-Imager
Jocou, L.; Berger, J.-P.; Malbet, F. et al

in Schöller, Markus; Danchi, William; Delplancke, Françoise (Eds.) Optical and Infrared Interferometry (2008, July 01)

The VLTI Spectro Imager project aims to perform imaging with a temporal resolution of 1 night and with a maximum angular resolution of 1 milliarcsecond, making best use of the Very Large Telescope ... [more ▼]

The VLTI Spectro Imager project aims to perform imaging with a temporal resolution of 1 night and with a maximum angular resolution of 1 milliarcsecond, making best use of the Very Large Telescope Interferometer capabilities. To fulfill the scientific goals (see Garcia et. al.), the system requirements are: a) combining 4 to 6 beams; b) working in spectral bands J, H and K; c) spectral resolution from R= 100 to 12000; and d) internal fringe tracking on-axis, or off-axis when associated to the PRIMA dual-beam facility. The concept of VSI consists on 6 sub-systems: a common path distributing the light between the fringe tracker and the scientific instrument, the fringe tracker ensuring the co-phasing of the array, the scientific instrument delivering the interferometric observables and a calibration tool providing sources for internal alignment and interferometric calibrations. The two remaining sub-systems are the control system and the observation support software dedicated to the reduction of the interferometric data. This paper presents the global concept of VSI science path including the common path, the scientific instrument and the calibration tool. The scientific combination using a set of integrated optics multi-way beam combiners to provide high-stability visibility and closure phase measurements are also described. Finally we will address the performance budget of the global VSI instrument. The fringe tracker and scientific spectrograph will be shortly described. [less ▲]

Detailed reference viewed: 7 (0 ULg)
See detailThe European Interferometry Initiative (EII) within OPTICON
Surdej, Jean ULg; Chelli, A.; Garcia, P. et al

in Epchtein, N.; Candidi, M. (Eds.) EAS Publications Series, Volume 25 (2007)

We present a brief summary of past Network and Joint Research Activities of the European Interferometry Initiative Consortium in FP6 within OPTICON, of a Marie Curie exchange and education project within ... [more ▼]

We present a brief summary of past Network and Joint Research Activities of the European Interferometry Initiative Consortium in FP6 within OPTICON, of a Marie Curie exchange and education project within the EU program and of planned activitiesinFP7. [less ▲]

Detailed reference viewed: 24 (3 ULg)