References of "Chatel, Guillaume"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailHedgehog signaling pathway is inactive in colorectal cancer cell lines
Chatel, Guillaume; Ganeff, Corinne ULg; Boussif, Naima et al

in International Journal of Cancer = Journal International du Cancer (2007), 121(12), 2622-2627

The Hedgehog (Hh) signaling pathway plays an important role in human development. Abnormal activation of this pathway has been observed in several types of human cancers, such as the upper gastro ... [more ▼]

The Hedgehog (Hh) signaling pathway plays an important role in human development. Abnormal activation of this pathway has been observed in several types of human cancers, such as the upper gastro-intestinal tract cancers. However, activation of the Hh pathway in colorectal cancers is controversial. We analyzed the expression of the main key members of the Hh pathway in 7 colon cancer cell lines in order to discover whether the pathway is constitutively active in these cells. We estimated the expression of SHH, IHH, PTCH, SMO, GLI1, GLI2, GLI3, SUFU and HHIP genes by RT-PCR. Moreover, Hh ligand, Gli3 and Sufu protein levels were quantified by western blotting. None of the cell lines expressed the complete set of Hh pathway members. The ligands were absent from Colo320 and HCT116 cells, Smo from Colo205, HT29 and WiDr. GLI1 gene was not expressed in SW480 cells nor were GLI2/GLI3 in Colo205 or Caco-2 cells. Furthermore the repressive form of Gli3, characteristic of an inactive pathway, was detected in SW480 and Colo320 cells. Finally treatment of colon cancer cells with cyclopamine, a specific inhibitor of the Hh pathway, did not downregulate PTCH and GLI1 genes expression in the colorectal cells, whereas it did so in PANC1 control cells. Taken together, these results indicate that the aberrant activation of the Hh signaling pathway is not common in colorectal cancer cell lines. (c) 2007 Wiley-Liss, Inc. [less ▲]

Detailed reference viewed: 81 (12 ULg)
Full Text
Peer Reviewed
See detailDistal ERBB2 promoter fragment displays specific transcriptional and nuclear binding activities in ERBB2 overexpressing breast cancer cells
Delacroix, Laurence ULg; Begon, Dominique ULg; Chatel, Guillaume et al

in DNA & Cell Biology (2005), 24(9), 582-594

Overexpression of the ERBB2 gene occurs in 30% of human breast cancers and is correlated with poor prognosis. The deregulation is the consequence of an increased transcription level and gene amplification ... [more ▼]

Overexpression of the ERBB2 gene occurs in 30% of human breast cancers and is correlated with poor prognosis. The deregulation is the consequence of an increased transcription level and gene amplification. Several laboratories, including our own, have identified, in the proximal promoter, enhancers implicated in the gene overexpression. However, our previous studies of a 6-kb ERBB2 promoter fragment revealed the presence of repressing fragments, which were able to overcome the effect of the proximal enhancers. These repressing elements were functional in all cell lines, regardless of their endogenous ERBB2 expression level. Here, we show that a distal ERBB2 promoter region restores high transcription rates specifically in ERBB2 overexpressing breast cancer cells. This distal promoter region thus contains enhancers essential for the overexpression of the gene. By EMSA, performed with nuclear extract of cells overexpressing (BT-474) or not (MDA-MB-231) the ERBB2 gene, we show that at least two sequences of the distal promoter region are bound exclusively by BT-474 extract. Further experiments reveal that AP-2 transcription factors contribute to this differential binding activity, by binding recognition sequences located 4500 bp and 4000 bp upstream of the transcription start site. These sites are occupied by AP2 in vivo, as demonstrated by ChIP assay. Inactivation of AP-2 proteins in ERBB2 overexpressing cells reduces the distal promoter activity up to 70%, indicating the AP-2 factors are implicated in the strong distal enhancing effect. Moreover, we identified a 54-bp fragment that is bound specifically by BT-474 nuclear extract. Further experiments did not lead to the identification of the protein responsible for this binding. Our results thus highlight the importance of ERBB2 distal promoter region and further implicate AP-2 in ERBB2 overexpression in breast cancer cells. [less ▲]

Detailed reference viewed: 124 (77 ULg)