References of "Chase, J Geoffrey"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailInterstitial insulin kinetic parameters for a 2-compartment insulin model with saturable clearance
Pretty, Christopher G.; Le Compte, Aaron; Penning, Sophie ULg et al

in Computer Methods and Programs in Biomedicine (2014)

Detailed reference viewed: 10 (0 ULg)
Full Text
Peer Reviewed
See detailImpact of sensor and measurement timing errors on model-based insulin sensitivity
Pretty, Christopher ULg; Signal, Matthew; Fisk, Liam et al

in Computer Methods & Programs in Biomedicine (2013)

Detailed reference viewed: 13 (0 ULg)
Full Text
Peer Reviewed
See detailInsulin Sensitivity during Hypothermia in Critically Ill Patients
Sah Pri, Azurahisham; Chase, J. Geoffrey; Le Compte, Aaron J. et al

Poster (2013, September)

Detailed reference viewed: 17 (1 ULg)
Full Text
Peer Reviewed
See detailSimulation of Left Atrial Function Using a Multi-Scale Model of the Cardiovascular System
Pironet, Antoine ULg; Dauby, Pierre ULg; Paeme, Sabine ULg et al

in PLoS ONE (2013), 8(6), 65146

During a full cardiac cycle, the left atrium successively behaves as a reservoir, a conduit and a pump. This complex behavior makes it unrealistic to apply the time-varying elastance theory to ... [more ▼]

During a full cardiac cycle, the left atrium successively behaves as a reservoir, a conduit and a pump. This complex behavior makes it unrealistic to apply the time-varying elastance theory to characterize the left atrium, first, because this theory has known limitations, and second, because it is still uncertain whether the load independence hypothesis holds. In this study, we aim to bypass this uncertainty by relying on another kind of mathematical model of the cardiac chambers. In the present work, we describe both the left atrium and the left ventricle with a multi-scale model. The multi-scale property of this model comes from the fact that pressure inside a cardiac chamber is derived from a model of the sarcomere behavior. Macroscopic model parameters are identified from reference dog hemodynamic data. The multi-scale model of the cardiovascular system including the left atrium is then simulated to show that the physiological roles of the left atrium are correctly reproduced. This include a biphasic pressure wave and an eight-shaped pressure-volume loop. We also test the validity of our model in non basal conditions by reproducing a preload reduction experiment by inferior vena cava occlusion with the model. We compute the variation of eight indices before and after this experiment and obtain the same variation as experimentally observed for seven out of the eight indices. In summary, the multi-scale mathematical model presented in this work is able to correctly account for the three roles of the left atrium and also exhibits a realistic left atrial pressure-volume loop. Furthermore, the model has been previously presented and validated for the left ventricle. This makes it a proper alternative to the time-varying elastance theory if the focus is set on precisely representing the left atrial and left ventricular behaviors. [less ▲]

Detailed reference viewed: 34 (18 ULg)
Full Text
Peer Reviewed
See detailEvaluation of a Model-Based Hemodynamic Monitoring Method in a Porcine Study of Septic Shock
Revie, James; Stevenson, David; Chase, J. Geoffrey et al

in Computational and Mathematical Methods in Medicine (2013)

Detailed reference viewed: 21 (7 ULg)
Full Text
Peer Reviewed
See detailEffect of abrupt preload reduction on left atrial and ventricular pressures in a multi-scale mathematical model of the cardiovascular system
Pironet, Antoine ULg; Dauby, Pierre ULg; Kosta, Sarah ULg et al

in European Heart Journal Supplements : Journal of the European Society of Cardiology (2013), 34

Detailed reference viewed: 20 (4 ULg)
Full Text
Peer Reviewed
See detailA new method for computing the derivatives of the mean and amplitude of physiological variables with respect to the parameters of a cardiovascular system model
Pironet, Antoine ULg; Dauby, Pierre ULg; Revie, James A. et al

in Minimally Invasive Therapy & Allied technologies : Official Journal of the Society for Minimally Invasive Therapy (2013), 22

Detailed reference viewed: 18 (6 ULg)
Full Text
Peer Reviewed
See detailModel-based glycemic control in critical care
Pretty, Christopher ULg; Penning, Sophie ULg; Le Compte, Aaron J. et al

Poster (2012, December)

Detailed reference viewed: 20 (4 ULg)
Full Text
Peer Reviewed
See detailInsulin clearance during hyper-insulinemia euglycemia therapy
Penning, Sophie ULg; MASSION, Paul ULg; Pretty, Christopher ULg et al

in Proceedings of the 11th Belgian Day on Biomedical Engineering (2012, December)

Detailed reference viewed: 25 (12 ULg)
Full Text
Peer Reviewed
See detailInsulin clearance during hyper-insulinemia euglycemia therapy
Penning, Sophie ULg; MASSION, Paul ULg; Pretty, Christopher ULg et al

Poster (2012, December)

Detailed reference viewed: 25 (12 ULg)
Full Text
Peer Reviewed
See detailCumulative time in band (cTIB): glycemic level, variability and patient outcome all in one
Penning, Sophie ULg; Signal, Matthew; Preiser, Jean-Charles et al

Conference (2012, October 15)

Detailed reference viewed: 27 (2 ULg)
Full Text
Peer Reviewed
See detailCumulative time in band: glycemic level, variability and patient outcome vs. mortality
Penning, Sophie ULg; Signal, Matthew; Preiser, Jean-Charles et al

Poster (2012, October)

Detailed reference viewed: 10 (0 ULg)
Full Text
Peer Reviewed
See detailCumulative Time in Band (cTIB): Glycemic Level, Variability and Patient Outcome All in 1
Penning, Sophie ULg; Signal, Matthew; Preiser, Jean-Charles et al

in Intensive Care Medicine (2012, October), 38 (Suppl 1)

Detailed reference viewed: 25 (4 ULg)
Full Text
Peer Reviewed
See detailSecond pilot trials of the STAR-Liege protocol for tight glycemic control in critically ill patients
Penning, Sophie ULg; Le Compte, Aaron J.; MASSION, Paul ULg et al

in BioMedical Engineering OnLine (2012)

Detailed reference viewed: 25 (6 ULg)
Full Text
Peer Reviewed
See detailStructural model of the mitral valve included in a cardiovascular closed loop model. Static and dynamic validation
Paeme, Sabine ULg; Pironet, Antoine ULg; Chase, J. Geoffrey et al

in proceedings of 8th IFAC Symposium on Biological and Medical Systems, Budapest 29-31 août 2012 (2012, August 31)

Detailed reference viewed: 23 (4 ULg)