References of "Ceulemans, Reinhart"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailFluxes of the greenhouse gases (CO2, CH4 and N2O) above a short-rotation poplar plantation after conversion from agricultural land
Zona, Donatella; Janssens, I.A.; Aubinet, Marc ULg et al

in Agricultural and Forest Meteorology (2013), 169

The increasing demand for renewable energy may lead to the conversion of millions of hectares into bioenergy plantations with a possible substantial transitory carbon (C) loss. In this study we report on ... [more ▼]

The increasing demand for renewable energy may lead to the conversion of millions of hectares into bioenergy plantations with a possible substantial transitory carbon (C) loss. In this study we report on the greenhouse gas fluxes (CO2, CH4, and N2O) measured using eddy covariance of a short-rotation bioenergy poplar plantation converted from agricultural fields. During the first six months after the establishment of the plantation (June–December 2010) there were substantial CO2, CH4, and N2O emissions (a total of 5.36 ± 0.52 Mg CO2eq ha−1 in terms of CO2 equivalents). Nitrous oxide loss mostly occurred during a week-long peak emission after an unusually large rainfall. This week-long N2O emission represented 52% of the entire N2O loss during one and an half years of measurements. As most of the N2O loss occurred in just this week-long period, accurately capturing these emission events are critical to accurate estimates of the GHG balance of bioenergy. While initial establishment (June–December 2010) of the plantation resulted in a net CO2 loss into the atmosphere (2.76 ± 0.16 Mg CO2eq ha−1), in the second year (2011) there was substantial net CO2 uptake (−3.51 ± 0.56 Mg CO2eq ha−1). During the entire measurement period, CH4 was a source to the atmosphere (0.63 ± 0.05 Mg CO2eq ha−1 in 2010, and 0.49 ± 0.05 Mg CO2eq ha−1 in 2011), and was controlled by water table depth. Importantly, over the entire measurement period, the sum of the CH4 and N2O losses was much higher (3.51 ± 0.52 Mg CO2eq ha−1) than the net CO2 uptake (−0.76 ± 0.58 Mg CO2eq ha−1). As water vailability was an important control on the GHG emission of the plantation, expected climate change and altered rainfall pattern could increase the negative environmental impacts of bioenergy. [less ▲]

Detailed reference viewed: 29 (3 ULg)
Full Text
Peer Reviewed
See detailDo climate warming and plant species richness affect potential nitrification, basal respiration and ammonia-oxidizing bacteria in experimental grasslands?
Malchair, Sandrine ULg; De Boeck, Hans, J.; Lemmens, Catherine, M.H.M. et al

in Soil Biology & Biochemistry (2010), 42

Ammonia-oxidizing bacteria (AOB) are key organisms in the N cycle, as they control the first, rate-limiting step of the nitrification process. The question whether current environmental disturbances, such ... [more ▼]

Ammonia-oxidizing bacteria (AOB) are key organisms in the N cycle, as they control the first, rate-limiting step of the nitrification process. The question whether current environmental disturbances, such as climate warming and plant diversity losses, select for a particular community structure of AOB and/or influence their activity remains open. The purpose of this research was to study the impact of a 3 °C warming and of plant species richness (S) on microbial activity and diversity in synthesized grasslands, with emphasis on the nitrification process and on the diversity (community structure and richness) of ammonia-oxidizing bacteria (AOB).We measured soil chemical characteristics, basal respiration, potential nitrification and AOB diversity in soils under increasing plant species richness (S ¼ 1, S ¼ 3, S ¼ 9) at ambient and (ambient +3 °C) temperature. Species were drawn from a 9-species pool, belonging to three functional groups: forbs, legumes and grasses. Mixtures comprised species from each of the three functional groups. Warming did not affect AOB diversity and increased potential nitrification at S ¼ 3 only. Under warmed conditions, higher plant species richness resulted in increased potential nitrification rates. AOB richness increased with plant species richness. AOB community structure of monocultures under legumes differed from those under forbs and grasses. Clustering analysis revealed that AOB community structure under legume monocultures and mixtures of three and nine species grouped together. These results indicate that functional group identity rather than plant species richness influenced AOB community structure, especially through the presence of legumes. No clear relationship emerged between AOB richness and potential nitrification whatever plant species richness and temperature treatment. Our findings show a link between aboveground and belowground diversity, namely plant species richness, AOB richness and community structure. AOB richness was not related to soil processes, supporting the idea that increased diversity does not necessarily lead to increased rates of ecosystem processes. [less ▲]

Detailed reference viewed: 30 (6 ULg)
Full Text
Peer Reviewed
See detailLatitudinal patterns of magnitude and interannual variability in net ecosystem exchange regulated by biological and environmental variables
Yuan, Wenping; Luo, Yiqi; Richardson, Andrew D et al

in Global Change Biology (2009), 15(12), 2905-2920

Over the last two and half decades, strong evidence showed that the terrestrial ecosystems are acting as a net sink for atmospheric carbon. However the spatial and temporal patterns of variation in the ... [more ▼]

Over the last two and half decades, strong evidence showed that the terrestrial ecosystems are acting as a net sink for atmospheric carbon. However the spatial and temporal patterns of variation in the sink are not well known. In this study, we examined latitudinal patterns of interannual variability (IAV) in net ecosystem exchange (NEE) of CO2 based on 163 site-years of eddy covariance data, from 39 northern-hemisphere research sites located at latitudes ranging from similar to 29 degrees N to similar to 64 degrees N. We computed the standard deviation of annual NEE integrals at individual sites to represent absolute interannual variability (AIAV), and the corresponding coefficient of variation as a measure of relative interannual variability (RIAV). Our results showed decreased trends of annual NEE with increasing latitude for both deciduous broadleaf forests and evergreen needleleaf forests. Gross primary production (GPP) explained a significant proportion of the spatial variation of NEE across evergreen needleleaf forests, whereas, across deciduous broadleaf forests, it is ecosystem respiration (Re). In addition, AIAV in GPP and Re increased significantly with latitude in deciduous broadleaf forests, but AIAV in GPP decreased significantly with latitude in evergreen needleleaf forests. Furthermore, RIAV in NEE, GPP, and Re appeared to increase significantly with latitude in deciduous broadleaf forests, but not in evergreen needleleaf forests. Correlation analyses showed air temperature was the primary environmental factor that determined RIAV of NEE in deciduous broadleaf forest across the North American sites, and none of the chosen climatic factors could explain RIAV of NEE in evergreen needleleaf forests. Mean annual NEE significantly increased with latitude in grasslands. Precipitation was dominant environmental factor for the spatial variation of magnitude and IAV in GPP and Re in grasslands. [less ▲]

Detailed reference viewed: 49 (2 ULg)