References of "Casarotto, S"
     in
Bookmark and Share    
Full Text
See detailQuantifying cortical EEG responses to TMS in (un)consciousness
Sarasso, S; Rosanova, M; Casali, A.G et al

in Clinical EEG and Neuroscience : Official Journal of the EEG and Clinical Neuroscience Society (ENCS) (2014)

We normally assess another individual's level of consciousness based on her or his ability to interact with the surrounding environment and communicate. Usually, if we observe purposeful behavior ... [more ▼]

We normally assess another individual's level of consciousness based on her or his ability to interact with the surrounding environment and communicate. Usually, if we observe purposeful behavior, appropriate responses to sensory inputs, and, above all, appropriate answers to questions, we can be reasonably sure that the person is conscious. However, we know that consciousness can be entirely within the brain, even in the absence of any interaction with the external world; this happens almost every night, while we dream. Yet, to this day, we lack an objective, dependable measure of the level of consciousness that is independent of processing sensory inputs and producing appropriate motor outputs. Theoretically, consciousness is thought to require the joint presence of functional integration and functional differentiation, otherwise defined as brain complexity. Here we review a series of recent studies in which Transcranial Magnetic Stimulation combined with electroencephalography (TMS/EEG) has been employed to quantify brain complexity in wakefulness and during physiological (sleep), pharmacological (anesthesia) and pathological (brain injury) loss of consciousness. These studies invariably show that the complexity of the cortical response to TMS collapses when consciousness is lost during deep sleep, anesthesia and vegetative state following severe brain injury, while it recovers when consciousness resurges in wakefulness, during dreaming, in the minimally conscious state or locked-in syndrome. The present paper will also focus on how this approach may contribute to unveiling the pathophysiology of disorders of consciousness affecting brain-injured patients. Finally, we will underline some crucial methodological aspects concerning TMS/EEG measurements of brain complexity. [less ▲]

Detailed reference viewed: 15 (0 ULg)
Full Text
Peer Reviewed
See detailA theoretically based index of consciousness independent of sensory processing and behavior
Casali, AG; Gosseries, Olivia ULg; Rosanova, M et al

in Science Translational Medicine (2013), 5

One challenging aspect of the clinical assessment of brain-injured, unresponsive patients is the lack of an objective measure of consciousness that is independent of the subject's ability to interact with ... [more ▼]

One challenging aspect of the clinical assessment of brain-injured, unresponsive patients is the lack of an objective measure of consciousness that is independent of the subject's ability to interact with the external environment. Theoretical considerations suggest that consciousness depends on the brain's ability to support complex activity patterns that are, at once, distributed among interacting cortical areas (integrated) and differentiated in space and time (information-rich). We introduce and test a theory-driven index of the level of consciousness called the perturbational complexity index (PCI). PCI is calculated by (i) perturbing the cortex with transcranial magnetic stimulation (TMS) to engage distributed interactions in the brain (integration) and (ii) compressing the spatiotemporal pattern of these electrocortical responses to measure their algorithmic complexity (information). We test PCI on a large data set of TMS-evoked potentials recorded in healthy subjects during wakefulness, dreaming, nonrapid eye movement sleep, and different levels of sedation induced by anesthetic agents (midazolam, xenon, and propofol), as well as in patients who had emerged from coma (vegetative state, minimally conscious state, and locked-in syndrome). PCI reliably discriminated the level of consciousness in single individuals during wakefulness, sleep, and anesthesia, as well as in patients who had emerged from coma and recovered a minimal level of consciousness. PCI can potentially be used for objective determination of the level of consciousness at the bedside [less ▲]

Detailed reference viewed: 5 (0 ULg)