References of "Carone, L"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission XXI. CoRoT-19b: A low density planet orbiting an old inactive F9V-star
Guenther, E. W.; Diaz, R. F.; Gazzano, J-C et al

in Astronomy and Astrophysics (2012), 537

Observations of transiting extrasolar planets are of key importance to our understanding of planets because their mass, radius, and mass density can be determined. The CoRoT space mission allows us to ... [more ▼]

Observations of transiting extrasolar planets are of key importance to our understanding of planets because their mass, radius, and mass density can be determined. The CoRoT space mission allows us to achieve a very high photometric accuracy. By combining CoRoT data with high-precision radial velocity measurements, we derive precise planetary radii and masses. We report the discovery of CoRoT-19b, a gas-giant planet transiting an old, inactive F9V-type star with a period of four days. After excluding alternative physical configurations mimicking a planetary transit signal, we determine the radius and mass of the planet by combining CoRoT photometry with high-resolution spectroscopy obtained with the echelle spectrographs SOPHIE, HARPS, FIES, and SANDIFORD. To improve the precision of its ephemeris and the epoch, we observed additional transits with the TRAPPIST and Euler telescopes. Using HARPS spectra obtained during the transit, we then determine the projected angle between the spin of the star and the orbit of the planet. We find that the host star of CoRoT-19b is an inactive F9V-type star close to the end of its main-sequence life. The host star has a mass M*=1.21+/-0.05 Msun and radius R*=1.65+/-0.04 Rsun. The planet has a mass of Mp=1.11+/-0.06 Mjup and radius of Rp=1.29+/-0.03 Rjup. The resulting bulk density is only rho=0.71+/-0.06 gcm-3, which is much lower than that for Jupiter. The exoplanet CoRoT-19b is an example of a giant planet of almost the same mass as Jupiter but a 30% larger radius. [less ▲]

Detailed reference viewed: 46 (12 ULg)
Full Text
Peer Reviewed
See detailPlanetary transit candidates in the CoRoT LRa01 field
Carone, L.; Gandolfi, D.; Cabrera, J. et al

in Astronomy and Astrophysics (2012), 538

Context: CoRoT is a pioneering space mission whose primary goals are stellar seismology and extrasolar planets search. Its surveys of large stellar fields generate numerous planetary candidates whose ... [more ▼]

Context: CoRoT is a pioneering space mission whose primary goals are stellar seismology and extrasolar planets search. Its surveys of large stellar fields generate numerous planetary candidates whose lightcurves have transit-like features. An extensive analytical and observational follow-up effort is undertaken to classify these candidates. Aims: The list of planetary transit candidates from the CoRoT LRa01 star field in the Monoceros constellation towards the Galactic anti-center is presented. The CoRoT observations of LRa01 lasted from 24 October 2007 to 3 March 2008. Methods: 7470 chromatic and 3938 monochromatic lightcurves were acquired and analysed. Instrumental noise and stellar variability were treated with several filtering tools by different teams from the CoRoT community. Different transit search algorithms were applied to the lightcurves. Results: Fifty-one stars were classified as planetary transit candidates in LRa01. Thirty-seven (i.e., 73 % of all candidates) are "good" planetary candidates based on photometric analysis only. Thirty-two (i.e., 87 % of the "good" candidates) have been followed-up. At the time of this writing twenty-two cases have been solved and five planets have been discovered: three transiting hot-Jupiters (CoRoT-5b, CoRoT-12b, and CoRoT-21b), the first terrestrial transiting planet (CoRoT-7b), and another planet in the same system (CoRoT-7c, detected by radial velocity survey only). Evidences of another non-transiting planet in the CoRoT-7 system, namely CoRoT-7d, have been recently found. [less ▲]

Detailed reference viewed: 14 (1 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission. XXIII. CoRoT-21b: a doomed large Jupiter around a faint subgiant star
Pätzold, M.; Endl, M.; Csizmadia, Sz et al

in Astronomy and Astrophysics (2012), 545

CoRoT-21, a F8IV star of magnitude V = 16 mag, was observed by the space telescope CoRoT during the Long Run 01 (LRa01) in the first winter field (constellation Monoceros) from October 2007 to March 2008 ... [more ▼]

CoRoT-21, a F8IV star of magnitude V = 16 mag, was observed by the space telescope CoRoT during the Long Run 01 (LRa01) in the first winter field (constellation Monoceros) from October 2007 to March 2008. Transits were discovered during the light curve processing. Radial velocity follow-up observations, however, were performed mainly by the 10-m Keck telescope in January 2010. The companion CoRoT-21b is a Jupiter-like planet of 2.26 ± 0.33 Jupiter masses and 1.30 ± 0.14 Jupiter radii in an circular orbit of semi-major axis 0.0417 ± 0.0011 AU and an orbital period of 2.72474 ± 0.00014 days. The planetary bulk density is (1.36 ± 0.48) × 10[SUP]3[/SUP] kg m[SUP]-3[/SUP], very similar to the bulk density of Jupiter, and follows an M[SUP]1/3[/SUP] - R relation like Jupiter. The F8IV star is a sub-giant star of 1.29 ± 0.09 solar masses and 1.95 ± 0.2 solar radii. The star and the planet exchange extremetidal forces that will lead to orbital decay and extreme spin-up of the stellar rotation within 800 Myr if the stellar dissipation is Q[SUB]∗[/SUB]/k[SUB]2∗[/SUB] ≤ 10[SUP]7[/SUP]. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany and Spain. [less ▲]

Detailed reference viewed: 15 (0 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission. XXII. CoRoT-16b: a hot Jupiter with a hint of eccentricity around a faint solar-like star
Ollivier, M; Gillon, Michaël ULg; Santerne, A et al

in Astronomy and Astrophysics (2012), 541

<BR /> Aims: We report the discovery of CoRoT-16b, a low density hot jupiter that orbits a faint G5V star (mV = 15.63) in 5.3523 ± 0.0002 days with slight eccentricity. A fit of the data with no a priori ... [more ▼]

<BR /> Aims: We report the discovery of CoRoT-16b, a low density hot jupiter that orbits a faint G5V star (mV = 15.63) in 5.3523 ± 0.0002 days with slight eccentricity. A fit of the data with no a priori assumptions on the orbit leads to an eccentricity of 0.33 ± 0.1. We discuss this value and also derive the mass and radius of the planet. <BR /> Methods: We analyse the photometric transit curve of CoRoT-16 given by the CoRoT satellite, and radial velocity data from the HARPS and HIRES spectrometers. A combined analysis using a Markov chain Monte Carlo algorithm is used to get the system parameters. <BR /> Results: CoRoT-16b is a 0.535 -0.083/+0.085 M[SUB]J[/SUB], 1.17 -0.14/+0.16 R[SUB]J[/SUB] hot Jupiter with a density of 0.44 -0.14/+0.21 g cm[SUP]-3[/SUP]. Despite its short orbital distance (0.0618 ± 0.0015 AU) and the age of the parent star (6.73 ± 2.8 Gyr), the planet orbit exhibits significantly non-zero eccentricity. This is very uncommon for this type of objects as tidal effects tend to circularise the orbit. This value is discussed taking into account the characteristics of the star and the observation accuracy. The CoRoT space mission, launched on December 27, 2006, has been developed and is operated by the CNES with the contribution of Austria, Belgium, Brasil, ESA, Germany, and Spain.Observations made with the HARPS spectrograph at ESO La Silla Observatory (HARPS programs 083.C-0186 and 184.C-0639) and the HIRES spectrograph at the Keck Observatory (NASA-Keck programs N035Hr, N143Hr and N095Hr). [less ▲]

Detailed reference viewed: 15 (0 ULg)
Full Text
Peer Reviewed
See detailPlanetary transit candidates in the CoRoT-SRc01 field
Erikson, A.; Santerne, A.; Renner, S. et al

in Astronomy and Astrophysics (2012), 539

Context. The space mission CoRoT is devoted to the analysis of stellar variability and the photometric detection of extrasolar planets. <BR /> Aims: We present the list of planetary transit candidates ... [more ▼]

Context. The space mission CoRoT is devoted to the analysis of stellar variability and the photometric detection of extrasolar planets. <BR /> Aims: We present the list of planetary transit candidates detected in the first short run observed by CoRoT that targeted SRc01, towards the Galactic center in the direction of Aquila, which lasted from April to May 2007. <BR /> Methods: Among the acquired data, we analyzed those for 1269 sources in the chromatic bands and 5705 in the monochromatic band. Instrumental noise and the stellar variability were treated with several detrending tools, to which several transit-search algorithms were subsequently applied. <BR /> Results: Fifty-one sources were classified as planetary transit candidates and 26 were followed up with ground-based observations. Until now, no planet has been detected in the CoRoT data from the SRc01 field. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with contributions from Austria, Belgium, Brazil, ESA, Germany, and Spain. The CoRoT data are available to the community from the CoRoT archive: <A href="http://idoc-corot.ias.u-psud.fr">http://idoc-corot.ias.u-psud.fr</A>Based in part on observations made with the 1.93-m telescope at Observatoire de Haute Provence (CNRS), France (SOPHIE Program 08A.PNP.MOUT).Based in part on observations made with the ESO-3.60-m telescope at La Silla Observatory (ESO), Chile (HARPS Program ESO - 081.C-0388) and with the ESO-VLT telescope at Paranal Observatory (ESO), Chile (FLAMES Program ESO - 081.C-0413). [less ▲]

Detailed reference viewed: 16 (1 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission Resolving the nature of transit candidates for the LRa03 and SRa03 fields
Cavarroc, C.; Moutou, C.; Gandolfi, D. et al

in Astrophysics & Space Science (2012), 337

CoRoT is a space telescope which aims at studying internal structure of stars and detecting extrasolar planets. We present here a list of transits detected in the light curves of stars observed by CoRoT ... [more ▼]

CoRoT is a space telescope which aims at studying internal structure of stars and detecting extrasolar planets. We present here a list of transits detected in the light curves of stars observed by CoRoT in two fields in the anti-center direction: the LRa03 one observed during 148 days from 3 October 2009 to 1 March 2010 followed by the SRa03 one from the 5 March 2010 to the 29 March 2010 during 25 days. 5329 light curves for the LRa03 field and 4169 for the SRa03 field were analyzed by the detection team of CoRoT. Then some of the selected exoplanetary candidates have been followed up from the ground. In the LRa03 field, 19 exoplanet candidates have been found, 8 remain unsolved. No secured planet has been found yet. In the SRa03 field, there were 11 exoplanetary candidates among which 6 cases remain unsolved and 3 planets have been found: CoRoT-18b, CoRoT-19b, CoRoT-20b. [less ▲]

Detailed reference viewed: 11 (0 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission. XVIII. CoRoT-18b: a massive hot Jupiter on a prograde, nearly aligned orbit
Hébrard, G.; Evans, T. M.; Alonso, R. et al

in Astronomy and Astrophysics (2011), 533

We report the detection of CoRoT-18b, a massive hot Jupiter transiting in front of its host star with a period of 1.9000693 ± 0.0000028 days. This planet was discovered thanks to photometric data secured ... [more ▼]

We report the detection of CoRoT-18b, a massive hot Jupiter transiting in front of its host star with a period of 1.9000693 ± 0.0000028 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite combined with spectroscopic and photometric ground-based follow-up observations. The planet has a mass M[SUB]p[/SUB] = 3.47 ± 0.38 M[SUB]Jup[/SUB], a radius R[SUB]p[/SUB] = 1.31 ± 0.18 R[SUB]Jup[/SUB], and a density ρ[SUB]p[/SUB] = 2.2 ± 0.8 g cm[SUP]-3[/SUP]. It orbits a G9V star with a mass M[SUB]⋆[/SUB] = 0.95 ± 0.15 M[SUB]&sun;[/SUB], a radius R[SUB]⋆[/SUB] = 1.00 ± 0.13 R[SUB]&sun;[/SUB], and arotation period P[SUB]rot[/SUB] = 5.4 ± 0.4 days. The age of the system remains uncertain, with stellar evolution models pointing either to a few tens Ma or several Ga, while gyrochronology and lithium abundance point towards ages of a few hundred Ma. This mismatch potentially points to a problem in our understanding of the evolution of young stars, with possibly significant implications for stellar physics and the interpretation of inferred sizes of exoplanets around young stars. We detected the Rossiter-McLaughlin anomaly in the CoRoT-18 system thanks to the spectroscopic observation of a transit. We measured the obliquity ψ = 20° ± 20° (sky-projected value λ = -10° ± 20°), indicating that the planet orbits in the same way as the star is rotating and that this prograde orbit is nearly aligned with the stellar equator. The CoRoT space mission, launched on 2006 December 27, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany and Spain.Table 2 is available in electronic form at <A href="http://www.aanda.org">http://www.aanda.org</A> [less ▲]

Detailed reference viewed: 12 (0 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission. XVII. The hot Jupiter CoRoT-17b: a very old planet
Csizmadia, Szilard; Moutou, C.; Deleuil, M. et al

in Astronomy and Astrophysics (2011), 531

We report on the discovery of a hot Jupiter-type exoplanet, CoRoT-17b, detected by the CoRoT satellite. It has a mass of 2.43 ± 0.30 M[SUB]Jup[/SUB] and a radius of 1.02 ± 0.07 R[SUB]Jup[/SUB], while its ... [more ▼]

We report on the discovery of a hot Jupiter-type exoplanet, CoRoT-17b, detected by the CoRoT satellite. It has a mass of 2.43 ± 0.30 M[SUB]Jup[/SUB] and a radius of 1.02 ± 0.07 R[SUB]Jup[/SUB], while its mean density is 2.82 ± 0.38 g/cm[SUP]3[/SUP]. CoRoT-17b is in a circular orbit with a period of 3.7681 ± 0.0003 days. The host star is an old (10.7 ± 1.0 Gyr) main-sequence star, which makes it an intriguing object for planetary evolution studies. The planet's internal composition is not well constrained and can range from pure H/He to one that can contain ~380 earth masses of heavier elements. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany and Spain. Part of the observations were obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. Based on observations made with HARPS spectrograph on the 3.6-m European Organisation for Astronomical Research in the Southern Hemisphere telescope at La Silla Observatory, Chile (ESO program 184.C-0639). Based on observations made with the IAC80 telescope operated on the island of Tenerife by the Instituto de Astrofísica de Canarias in the Spanish Observatorio del Teide. Part of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. [less ▲]

Detailed reference viewed: 11 (0 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission. XVI. CoRoT-14b: an unusually dense very hot Jupiter
Tingley, B.; Endl, M.; Gazzano, J*-C et al

in Astronomy and Astrophysics (2011), 528

In this paper, the CoRoT ExoplanetScience Team announces its 14th discovery. Herein, we discuss the observations and analyses that allowed us to derive the parameters of this system: a hot Jupiter with a ... [more ▼]

In this paper, the CoRoT ExoplanetScience Team announces its 14th discovery. Herein, we discuss the observations and analyses that allowed us to derive the parameters of this system: a hot Jupiter with a mass of 7.6 ± 0.6 Jupiter masses orbiting a solar-type star (F9V) with a period of only 1.5 d, less than 5 stellar radii from its parent star. It is unusual for such a massive planet to have such a small orbit: only one other known higher mass exoplanet orbits with a shorter period. The CoRoT space mission, launched on December 27, 2006, has been developed and is operated by the CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Program), Germany and Spain. [less ▲]

Detailed reference viewed: 12 (0 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission. XV. CoRoT-15b: a brown-dwarf transiting companion
Bouchy, F.; Deleuil, M.; Guillot, T. et al

in Astronomy and Astrophysics (2011), 525

We report the discovery by the CoRoT space mission of a transiting brown dwarf orbiting a F7V star with an orbital period of 3.06 days. CoRoT-15b has a radius of 1.12[SUP]+0.30[/SUP][SUB]-0.15[/SUB] {R ... [more ▼]

We report the discovery by the CoRoT space mission of a transiting brown dwarf orbiting a F7V star with an orbital period of 3.06 days. CoRoT-15b has a radius of 1.12[SUP]+0.30[/SUP][SUB]-0.15[/SUB] {R}_Jup and a mass of 63.3 ± 4.1 {M}_Jup, and is thus the second transiting companion lying in the theoretical mass domain of brown dwarfs. CoRoT-15b is either very young or inflated compared to standard evolution models, a situation similar to that of M-dwarf stars orbiting close to solar-type stars. Spectroscopic constraints and an analysis of the lightcurve imply a spin period in the range 2.9-3.1 days for the central star, which is compatible with a double-synchronisation of the system. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany, and Spain. Observations made with HARPS spectrograph at ESO La Silla Observatory (184.C-0639). [less ▲]

Detailed reference viewed: 11 (0 ULg)
Full Text
Peer Reviewed
See detailExoplanet discoveries with the CoRoT space observatory
Lammer, H.; Dvorak, R.; Deleuil, M. et al

in Solar System Research (2010), 44

The CoRoT space observatory is a project which is led by the French space agency CNES and leading space research institutes in Austria, Brazil, Belgium, Germany and Spain and also the European Space ... [more ▼]

The CoRoT space observatory is a project which is led by the French space agency CNES and leading space research institutes in Austria, Brazil, Belgium, Germany and Spain and also the European Space Agency ESA. CoRoT observed since its launch in December 27, 2006 about 100 000 stars for the exoplanet channel, during 150 days uninterrupted high-precision photometry. Since the The CoRoT-team has several exoplanet candidates which are currently analyzed under its study, we report here the discoveries of nine exoplanets which were observed by CoRoT. Discovered exoplanets such as CoRoT-3b populate the brown dwarf desert and close the gap of measured physical properties between usual gas giants and very low mass stars. CoRoT discoveries extended the known range of planet masses down to about 4.8 Earth-masses (CoRoT-7b) and up to 21 Jupiter masses (CoRoT-3b), the radii to about 1.68 × 0.09 R [SUB]Earth[/SUB] (CoRoT-7b) and up to the most inflated hot Jupiter with 1.49 × 0.09 R [SUB]Earth[/SUB] found so far (CoRoT-1b), and the transiting exoplanet with the longest period of 95.274 days (CoRoT-9b). Giant exoplanets have been detected at low metallicity, rapidly rotating and active, spotted stars. Two CoRoT planets have host stars with the lowest content of heavy elements known to show a transit hinting towards a different planethost-star-metallicity relation then the one found by radial-velocity search programs. Finally the properties of the CoRoT-7b prove that rocky planets with a density close to Earth exist outside the Solar System. Finally the detection of the secondary transit of CoRoT-1b at a sensitivity level of 10[SUP]-5[/SUP] and the very clear detection of the "super-Earth" CoRoT-7b at 3.5 × 10[SUP]-4[/SUP] relative flux are promising evidence that the space observatory is being able to detect even smaller exoplanets with the size of the Earth. [less ▲]

Detailed reference viewed: 23 (2 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission . XIII. CoRoT-13b: a dense hot Jupiter in transit around a star with solar metallicity and super-solar lithium content
Cabrera, J.; Bruntt, H.; Ollivier, M. et al

in Astronomy and Astrophysics (2010), 522

We announce the discovery of the transiting planet CoRoT-13b. Ground-based follow-up in CFHT and IAC80 confirmed CoRoT's observations. The mass of the planet was measured with the HARPS spectrograph and ... [more ▼]

We announce the discovery of the transiting planet CoRoT-13b. Ground-based follow-up in CFHT and IAC80 confirmed CoRoT's observations. The mass of the planet was measured with the HARPS spectrograph and the properties of the host star were obtained analyzing HIRES spectra from the Keck telescope. It is a hot Jupiter-like planet with an orbital period of 4.04 days, 1.3 Jupiter masses, 0.9 Jupiter radii, and a density of 2.34 g cm[SUP]-3[/SUP]. It orbits a G0V star with T_eff = 5 945 K, M[SUB]*[/SUB] = 1.09 M[SUB]ȯ[/SUB], R_* = 1.01 R[SUB]ȯ[/SUB], solar metallicity, a lithium content of + 1.45 dex, and an estimated age of between 0.12 and 3.15 Gyr. The lithium abundance of the star is consistent with its effective temperature, activity level, and age range derived from the stellar analysis. The density of the planet is extreme for its mass, implies that heavy elements are present with a mass of between about 140 and 300 {M}[SUB]⊕[/SUB]. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany and Spain. Part of the observations were obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. Based on observations made with HARPS spectrograph on the 3.6-m European Organisation for Astronomical Research in the Southern Hemisphere telescope at La Silla Observatory, Chile (ESO program 184.C-0639). Based on observations made with the IAC80 telescope operated on the island of Tenerife by the Instituto de Astrofísica de Canarias in the Spanish Observatorio del Teide. Part of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. [less ▲]

Detailed reference viewed: 19 (2 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission XIV. CoRoT-11b: a transiting massive "hot-Jupiter" in a prograde orbit around a rapidly rotating F-type star
Gandolfi, D.; Hébrard, G.; Alonso, R. et al

in Astronomy and Astrophysics (2010), 524

The CoRoT exoplanet science team announces the discovery of CoRoT-11b, a fairly massive hot-Jupiter transiting a V=12.9 mag F6 dwarf star (M*=1.27 +/- 0.05 Msun, R*=1.37 +/- 0.03 Rsun, Teff=6440 +/- 120 K ... [more ▼]

The CoRoT exoplanet science team announces the discovery of CoRoT-11b, a fairly massive hot-Jupiter transiting a V=12.9 mag F6 dwarf star (M*=1.27 +/- 0.05 Msun, R*=1.37 +/- 0.03 Rsun, Teff=6440 +/- 120 K), with an orbital period of P=2.994329 +/- 0.000011 days and semi-major axis a=0.0436 +/- 0.005 AU. The detection of part of the radial velocity anomaly caused by the Rossiter-McLaughlin effect shows that the transit-like events detected by CoRoT are caused by a planet-sized transiting object in a prograde orbit. The relatively high projected rotational velocity of the star (vsini=40+/-5 km/s) places CoRoT-11 among the most rapidly rotating planet host stars discovered so far. With a planetary mass of mp=2.33+/-0.34 Mjup and radius rp=1.43+/-0.03 Rjup, the resulting mean density of CoRoT-11b (rho=0.99+/-0.15 g/cm^3) can be explained with a model for an inflated hydrogen-planet with a solar composition and a high level of energy dissipation in its interior. [less ▲]

Detailed reference viewed: 22 (0 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission. X. CoRoT-10b: a giant planet in a 13.24 day eccentric orbit
Bonomo, A. S.; Santerne, A.; Alonso, R. et al

in Astronomy and Astrophysics (2010), 520

Context. The space telescope CoRoT searches for transiting extrasolar planets by continuously monitoring the optical flux of thousands of stars in several fields of view. <BR /> Aims: We report the ... [more ▼]

Context. The space telescope CoRoT searches for transiting extrasolar planets by continuously monitoring the optical flux of thousands of stars in several fields of view. <BR /> Aims: We report the discovery of CoRoT-10b, a giant planet on a highly eccentric orbit (e = 0.53 ± 0.04) revolving in 13.24 days around a faint (V = 15.22) metal-rich K1V star. <BR /> Methods: We used CoRoT photometry, radial velocity observations taken with the HARPS spectrograph, and UVES spectra of the parent star to derive the orbital, stellar, and planetary parameters. <BR /> Results: We derive a radius of the planet of 0.97 ± 0.07 R[SUB]Jup[/SUB] and a mass of 2.75 ± 0.16 M[SUB]Jup[/SUB]. The bulk density, ρ[SUB]p[/SUB] = 3.70 ± 0.83 g cm[SUP]-3[/SUP], is ~2.8 that of Jupiter. The core of CoRoT-10b could contain up to 240 M_⊕ of heavy elements. Moving along its eccentric orbit, the planet experiences a 10.6-fold variation in insolation. Owing to the long circularisation time, τ[SUB]circ[/SUB] > 7 Gyr, a resonant perturber is not required to excite and maintain the high eccentricity of CoRoT-10b. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany and Spain. [less ▲]

Detailed reference viewed: 34 (0 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission. XI. CoRoT-8b: a hot and dense sub-Saturn around a K1 dwarf
Bordé, P.; Bouchy, F.; Deleuil, M. et al

in Astronomy and Astrophysics (2010), 520

<BR /> Aims: We report the discovery of CoRoT-8b, a dense small Saturn-class exoplanet that orbits a K1 dwarf in 6.2 days, and we derive its orbital parameters, mass, and radius. <BR /> Methods: We ... [more ▼]

<BR /> Aims: We report the discovery of CoRoT-8b, a dense small Saturn-class exoplanet that orbits a K1 dwarf in 6.2 days, and we derive its orbital parameters, mass, and radius. <BR /> Methods: We analyzed two complementary data sets: the photometric transit curve of CoRoT-8b as measured by CoRoT and the radial velocity curve of CoRoT-8 as measured by the HARPS spectrometer. <BR /> Results: We find that CoRoT-8b is on a circular orbit with a semi-major axis of 0.063 ± 0.001 AU. It has a radius of 0.57 ± 0.02 R[SUB]J[/SUB], a mass of 0.22 ± 0.03 M[SUB]J[/SUB], and therefore a mean density of 1.6 ± 0.1 g cm[SUP]-3[/SUP]. <BR /> Conclusions: With 67% of the size of Saturn and 72% of its mass, CoRoT-8b has a density comparable to that of Neptune (1.76 g cm[SUP]-3[/SUP]). We estimate its content in heavy elements to be 47-63 {M}_⊕, and the mass of its hydrogen-helium envelope to be 7-23 {M}_⊕. At 0.063 AU, the thermal loss of hydrogen of CoRoT-8b should be no more than 0.1% over an assumed integrated lifetime of 3 Ga. Observations made with SOPHIE spectrograph at Observatoire de Haute Provence, France (PNP.07B.MOUT), and the HARPS spectrograph at ESO La Silla Observatory (081.C-0388 and 083.C-0186). The CoRoT space mission, launched on December 27, 2006, has been developed and is operated by the CNES with the contribution of Austria, Belgium, Brasil, ESA, Germany, and Spain.Both data sets are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/520/A66">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/520/A66</A> [less ▲]

Detailed reference viewed: 25 (2 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission. XII. CoRoT-12b: a short-period low-density planet transiting a solar analog star
Gillon, Michaël ULg; Hatzes, A.; Csizmadia, Szilard et al

in Astronomy and Astrophysics (2010), 520

We report the discovery by the CoRoT satellite of a new transiting giant planet in a 2.83 days orbit about a V = 15.5 solar analog star (M_* = 1.08 ± 0.08 M_ȯ, R_* = 1.1 ± 0.1 R_ȯ, T[SUB]eff[/SUB] = 5675 ... [more ▼]

We report the discovery by the CoRoT satellite of a new transiting giant planet in a 2.83 days orbit about a V = 15.5 solar analog star (M_* = 1.08 ± 0.08 M_ȯ, R_* = 1.1 ± 0.1 R_ȯ, T[SUB]eff[/SUB] = 5675 ± 80 K). This new planet, CoRoT-12b, has a mass of 0.92 ± 0.07 M[SUB]Jup[/SUB] and a radius of 1.44 ± 0.13 R[SUB]Jup[/SUB]. Its low density can be explained by standard models for irradiated planets. The CoRoT space mission, launched on December 27, 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Program), Germany and Spain. [less ▲]

Detailed reference viewed: 34 (5 ULg)
Full Text
Peer Reviewed
See detailA transiting giant planet with a temperature between 250K and 430K
Deeg, H. J.; Moutou, C.; Erikson, A. et al

in Nature (2010), 464

Of the over 400 known exoplanets, there are about 70 planets that transit their central star, a situation that permits the derivation of their basic parameters and facilitates investigations of their ... [more ▼]

Of the over 400 known exoplanets, there are about 70 planets that transit their central star, a situation that permits the derivation of their basic parameters and facilitates investigations of their atmospheres. Some short-period planets, including the first terrestrial exoplanet (CoRoT-7b), have been discovered using a space mission designed to find smaller and more distant planets than can be seen from the ground. Here we report transit observations of CoRoT-9b, which orbits with a period of 95.274days on a low eccentricity of 0.11+/-0.04 around a solar-like star. Its periastron distance of 0.36 astronomical units is by far the largest of all transiting planets, yielding a `temperate' photospheric temperature estimated to be between 250 and 430K. Unlike previously known transiting planets, the present size of CoRoT-9b should not have been affected by tidal heat dissipation processes. Indeed, the planet is found to be well described by standard evolution models with an inferred interior composition consistent with that of Jupiter and Saturn. [less ▲]

Detailed reference viewed: 34 (4 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission IX. CoRoT-6b: a transiting `hot Jupiter' planet in an 8.9d orbit around a low-metallicity star
Fridlund, M.; Hebrard, G.; Alonso, R. et al

in Astronomy and Astrophysics (2010), 512

The CoRoT satellite exoplanetary team announces its sixth transiting planet in this paper. We describe and discuss the satellite observations as well as the complementary ground-based observations ... [more ▼]

The CoRoT satellite exoplanetary team announces its sixth transiting planet in this paper. We describe and discuss the satellite observations as well as the complementary ground-based observations - photometric and spectroscopic - carried out to assess the planetary nature of the object and determine its specific physical parameters. The discovery reported here is a `hot Jupiter' planet in an 8.9d orbit, 18 stellar radii, or 0.08 AU, away from its primary star, which is a solar-type star (F9V) with an estimated age of 3.0 Gyr. The planet mass is close to 3 times that of Jupiter. The star has a metallicity of 0.2 dex lower than the Sun, and a relatively high $^7$Li abundance. While thelightcurveindicatesamuchhigherlevelof activity than, e.g., the Sun, there is no sign of activity spectroscopically in e.g., the [Ca ] H&K lines. [less ▲]

Detailed reference viewed: 35 (2 ULg)
Full Text
Peer Reviewed
See detailPlanetary transit candidates in Corot-IRa01 field
Carpano, S.; Cabrera, J.; Alonso, R. et al

in Astronomy and Astrophysics (2009), 506

Context: CoRoT is a pioneering space mission devoted to the analysis of stellar variability and the photometric detection of extrasolar planets. <BR />Aims: We present the list of planetary transit ... [more ▼]

Context: CoRoT is a pioneering space mission devoted to the analysis of stellar variability and the photometric detection of extrasolar planets. <BR />Aims: We present the list of planetary transit candidates detected in the first field observed by CoRoT, IRa01, the initial run toward the Galactic anticenter, which lasted for 60 days. <BR />Methods: We analysed 3898 sources in the coloured bands and 5974 in the monochromatic band. Instrumental noise and stellar variability were taken into account using detrending tools before applying various transit search algorithms. <BR />Results: Fifty sources were classified as planetary transit candidates and the most reliable 40 detections were declared targets for follow-up ground-based observations. Two of these targets have so far been confirmed as planets, CoRoT-1b and CoRoT-4b, for which a complete characterization and specific studies were performed. The CoRoTâ space mission, launched on December 27th 2006, has been developed and is operated by CNES, with contributions from Austria, Belgium, Brazil, ESA, Germany, and Spain. Four French laboratories associated with the CNRS (LESIA, LAM, IAS ,OMP) collaborate with CNES on the satellite development. First CoRoT data are available to the public from the CoRoT archive: http://idoc-corot.ias.u-psud.fr. [less ▲]

Detailed reference viewed: 43 (5 ULg)
Full Text
Peer Reviewed
See detailPlanetary transit candidates in CoRoT-LRc01 field
Cabrera, J.; Fridlund, M.; Ollivier, M. et al

in Astronomy and Astrophysics (2009), 506

Aims: We present here the list of planetary transit candidates detected in the first long run observed by CoRoT: LRc01, towards the galactic center in the direction of Aquila, which lasted from May to ... [more ▼]

Aims: We present here the list of planetary transit candidates detected in the first long run observed by CoRoT: LRc01, towards the galactic center in the direction of Aquila, which lasted from May to October 2007. <BR />Methods: we analyzed 3719 (33%) sources in the chromatic bands and 7689 in the monochromatic band. Instrumental noise and the stellar variability were treated with several detrending tools, on which subsequently several transit search algorithms were applied. <BR />Results: Forty two sources were classified as planetary transit candidates and up to now 26 cases have been solved. One planet (CoRoT-2b) and one brown-dwarf (CoRoT-3b) have been the subjects of detailed publications. The CoRoT space mission, launched on December 27 2006, was developed and is operated by CNES, with contributions from Austria, Belgium, Brazil, ESA, Germany and Spain. The first CoRoT data are available to the community from the CoRoT archive: http://idoc-corot.ias.u-psud.fr. [less ▲]

Detailed reference viewed: 36 (3 ULg)