References of "Caron, Nicolas"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailForkhead pathway in the control of adult neurogenesis.
Genin, Emmanuelle C.; Caron, Nicolas ULg; Vandenbosch, Renaud ULg et al

in Stem cells (Dayton, Ohio) (2014)

Full Text
Peer Reviewed
See detailNeuronal Differentiation in the Adult Brain: Cdk6 as the Molecular Regulator
Caron, Nicolas ULg; Genin, Emmanuelle ULg; Vandenbosch, Renaud ULg et al

in Hayat, Eric (Ed.) TUMORS OF THE CENTRAL NERVOUS SYSTEM (2013)

Detailed reference viewed: 108 (49 ULg)
Full Text
Peer Reviewed
See detailCycling or not cycling: cell cycle regulatory molecules and adult neurogenesis.
Beukelaers, Pierre ULg; Vandenbosch, Renaud ULg; Caron, Nicolas ULg et al

in Cellular and Molecular Life Sciences : CMLS (2012), 69(9), 1493-1503

The adult brain most probably reaches its highest degree of plasticity with the lifelong generation and integration of new neurons in the hippocampus and olfactory system. Neural precursor cells (NPCs ... [more ▼]

The adult brain most probably reaches its highest degree of plasticity with the lifelong generation and integration of new neurons in the hippocampus and olfactory system. Neural precursor cells (NPCs) residing both in the subgranular zone of the dentate gyrus and in the subventricular zone of the lateral ventricles continuously generate neurons that populate the dentate gyrus and the olfactory bulb, respectively. The regulation of NPC proliferation in the adult brain has been widely investigated in the past few years. Yet, the intrinsic cell cycle machinery underlying NPC proliferation remains largely unexplored. In this review, we discuss the cell cycle components that are involved in the regulation of NPC proliferation in both neurogenic areas of the adult brain. [less ▲]

Detailed reference viewed: 50 (21 ULg)
Full Text
Peer Reviewed
See detailCdk6-dependent regulation of g(1) length controls adult neurogenesis.
Beukelaers, Pierre; Vandenbosch, Renaud ULg; Caron, Nicolas ULg et al

in Stem Cells (2011), 29(4), 713-24

The presence of neurogenic precursors in the adult mammalian brain is now widely accepted, but the mechanisms coupling their proliferation with the onset of neuronal differentiation remain unknown. Here ... [more ▼]

The presence of neurogenic precursors in the adult mammalian brain is now widely accepted, but the mechanisms coupling their proliferation with the onset of neuronal differentiation remain unknown. Here, we unravel the major contribution of the G(1) regulator cyclin-dependent kinase 6 (Cdk6) to adult neurogenesis. We found that Cdk6 was essential for cell proliferation within the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricles. Specifically, Cdk6 deficiency prevents the expansion of neuronally committed precursors by lengthening G(1) phase duration, reducing concomitantly the production of newborn neurons. Altogether, our data support G(1) length as an essential regulator of the switch between proliferation and neuronal differentiation in the adult brain and Cdk6 as one intrinsic key molecular regulator of this process. STEM Cells 2011;29:713-724. [less ▲]

Detailed reference viewed: 58 (31 ULg)