References of "Cajot, Sébastien"
     in
Bookmark and Share    
Full Text
See detailReversibly cross-linked polymer micelle as smart drug dellivery device
Lecomte, Philippe ULg; Riva, Raphaël ULg; Cajot, Sébastien et al

Conference (2013, November 20)

Detailed reference viewed: 14 (4 ULg)
Full Text
See detailTailor made amphiphilic copolymers for the design of smart drug delivery systems
Riva, Raphaël ULg; Cajot, Sébastien; Jérôme, Christine ULg

Conference (2013, August 21)

Detailed reference viewed: 8 (3 ULg)
Full Text
Peer Reviewed
See detailNovel functional degradable block copolymers for the building of reactive micelles
Cajot, Sébastien; Lecomte, Philippe ULg; Jérôme, Christine ULg et al

in Polymer Chemistry (2013), 4(4), 1025-1037

Amphiphilic biocompatible copolymers are promising materials for the elaboration of nanosystems for drug delivery applications. This paper aims at reporting on the synthesis of new functional amphiphilic ... [more ▼]

Amphiphilic biocompatible copolymers are promising materials for the elaboration of nanosystems for drug delivery applications. This paper aims at reporting on the synthesis of new functional amphiphilic copolymers based on biocompatible and bioeliminable blocks. Poly(ethylene oxide) was selected as the hydrophilic block, whereas an aliphatic polyester, i.e. poly(epsilon-caprolactone), or a polycarbonate, i.e. poly(trimethylene carbonate), were chosen as the degradable hydrophobic block. In order to allow a post-functionalization of the micelles core, azide groups were introduced on the hydrophobic segment to provide reactivity towards functional alkyne derivatives by the copper azide-alkyne cycloaddition (CuAAC). For this purpose, a functional lactone, i.e. alpha-chloro-epsilon-caprolactone was introduced during the polymerization of the hydrophobic block before being converted into azide on the preformed copolymer. Such reactivity of the block copolymers and their self-assemblies is of prime interest for drugs or fluorescent dyes grafting, so as for micelles cross-linking. The influence of the azides distribution along the degradable block on the micelles post-functionalization ability has been studied by using alkyne bearing fluorescent dyes as model for drugs. The hydrophilicity of the dye on the micelles post-functionalization efficiency has also been investigated. [less ▲]

Detailed reference viewed: 72 (24 ULg)
Full Text
Peer Reviewed
See detailSmart nanocarriers for pH-triggered targeting and release of hydrophobic drugs
Cajot, Sébastien; Van Butsele, Kathy; Paillard, A. et al

in Acta Biomaterialia (2012), 8(12), 4215-4223

The use of hybrid pH-sensitive micelles mainly based on the PEO129-P2VP43-PCL17 ABC miktoarm star copolymer as potential triggered drug delivery systems has been investigated. Co-micellization of this ... [more ▼]

The use of hybrid pH-sensitive micelles mainly based on the PEO129-P2VP43-PCL17 ABC miktoarm star copolymer as potential triggered drug delivery systems has been investigated. Co-micellization of this star copolymer with a second copolymer labeled by a targeting ligand, i.e. biotin, on the pH sensitive block (poly-2-vinylpyridine, P2VP) has been considered here in order to impart possible active targeting of the tumor cells. Two architectures have been studied for these labeled copolymers, i.e. a miktoarm star or a linear ABC terpolymer and the respective hybrid micelles have been compared in terms of cytotoxicity (cells viability) and cellular uptake (by using fluorescent dye loaded micelles). Finally, the triggered drug release in the cytosol of tumor cells was investigated by studying on one hand the lysosomal integrity after internalization and on the other hand the release profile in function of the pH. [less ▲]

Detailed reference viewed: 47 (17 ULg)