References of "Broers, Aurore"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailGenomic structure, promoter analysis and expression of the porcine (Sus scrofa) TLR4 gene.
Thomas, Anne; Broers, Aurore ULg; Vandegaart, Hélène ULg et al

in Molecular Immunology (2006), 43(6), 653-659

Toll-like receptor 4 (TLR4) is essential for initiating the innate response to lipopolysaccharide (LPS) from Gram-negative bacteria by acting as a signal-transducing receptor. As the pig industry faces a ... [more ▼]

Toll-like receptor 4 (TLR4) is essential for initiating the innate response to lipopolysaccharide (LPS) from Gram-negative bacteria by acting as a signal-transducing receptor. As the pig industry faces a unique array of related pathogens, it is anticipated that the genotype of swine TLR4 could be of crucial importance in future strategies aimed at improving genetic resistance to infectious diseases. In order to help in investigating TLR4 as a candidate disease-resistance gene in pigs, we established its genomic structure and produced sufficient flanking intronic sequences to enable simple PCR amplification of the coding portions of the gene. Expression in different porcine tissues was studied and showed splicing variations in mRNA sequences. The cDNA sequence for poTLR4 contains an open reading frame of 2526bp that codes for 841 aa, 98 and 568bp in the 5'- and 3'-UTRs, respectively. Overall, the general organization of porcine, human, murine, and avian TLR4 genes is quite similar: three exons with the third one very long. A high level of conservation of the size and the sequence, especially for the two last exons and particularly in the sequence corresponding to the LRRs and TIR domain, is observed between species. The important antimicrobial properties of these proteins may account for a conservative selection pressure on these TLR4 coding sequences. Several putative binding sites described in the human and murine promoter of TLR4 genes have been identified in the 5'-flanking region of poTLR4. Conversely, this region lacks a TATA box, consensus initiator sequences, or GC-rich regions. The basic sequence data gathered will allow the establishment of an inventory of naturally occurring variation in porcine TLR4, so that alleles can be tested for disease association studies. [less ▲]

Detailed reference viewed: 13 (5 ULg)
Full Text
Peer Reviewed
See detailGenomic structure, promoter analysis, and expression of the porcine (Sus scrofa) Mx1 gene
Thomas, Anne; Palm, Mélanie; Broers, Aurore ULg et al

in Immunogenetics (2006), 58

Allelic polymorphisms at the mouse Mx1 locus affect the probability of survival after experimental influenzal disease, raising the possibility that marker-assisted selection using the homologous locus ... [more ▼]

Allelic polymorphisms at the mouse Mx1 locus affect the probability of survival after experimental influenzal disease, raising the possibility that marker-assisted selection using the homologous locus could improve the innate resistance of pigs to natural influenza infections. Several issues need to be resolved before efficient large scale screening of the allelic polymorphism at the porcine (Sus scrofa) Mx1 locus can be implemented. First, the Mx1 genomic structure has to be established and sufficient flanking intronic sequences have to be gathered to enable simple PCR amplification of the coding portions of the gene. Then, a basic knowledge of the promoter region needs to be obtained as an allelic variation there can significantly alter absolute levels and/or tissue-specificity of MX protein expression. The results gathered here show that the porcine Mx1 gene and promoter share the major structural and functional characteristics displayed by their homologs described in cattle, mouse, chicken, and man. The crucial function of the proximal interferon-sensitive response elements motif for gene expression is also demonstrated. The sequence data compiled here will allow an extensive analysis of the polymorphisms present among the widest spectrum possible of porcine breeds with the aim to identify an Mx1 allele providing antiviral resistance. [less ▲]

Detailed reference viewed: 31 (8 ULg)