References of "Briquet, Alexandra"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThinking out of the box - New approaches to controlling GVHD
Baron, Frédéric ULg; Humblet-Baron, Stéphanie; Ehx, Grégory ULg et al

in Current Hematologic Malignancy Reports (in press)

Graft-versus-host disease (GVHD) remains a major limitation of allogeneic hematopoietic cell transplantation (allo-HCT). Despite major advances in the understanding of GVHD pathogenesis, standard GVHD ... [more ▼]

Graft-versus-host disease (GVHD) remains a major limitation of allogeneic hematopoietic cell transplantation (allo-HCT). Despite major advances in the understanding of GVHD pathogenesis, standard GVHD prophylaxis regimens continue to bebased on the combination of a calcineurin inhibitor with an antimetabolite, while first line treatmentsstill relies on high-dose corticosteroids. Further, no second line treatment has emerged thus far in acute or chronic GVHD patients who failed on corticosteroids. After briefly reviewing current standards of GVHD prevention and treatment, this article will discuss recent approaches that might change GVHD prophylaxis / treatment in the next decades, with a special focus on recently developed immunoregulatory strategies based on infusion of mesenchymal stromal or regulatory T-cells, or on injection of lowdose interleukin-2. [less ▲]

Detailed reference viewed: 17 (3 ULg)
Full Text
Peer Reviewed
See detailImpact of bone marrow-derived mesenchymal stromal cells on experimental xenogeneic graft-versus-host disease
Bruck, France; Belle, Ludovic ULg; LECHANTEUR, Chantal ULg et al

in Cytotherapy (2013), 15(3), 267-279

Background aims. Graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation caused by donor T cells reacting against host tissues. Previous ... [more ▼]

Background aims. Graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation caused by donor T cells reacting against host tissues. Previous studies have suggested that mesenchymal stromal cells (MSCs) could exert potent immunosuppressive effects. Methods. The ability of human bone marrow derived MSCs to prevent xenogeneic GVHD in non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice and in NOD/SCID/interleukin-2Rg(null) (NSG) mice transplanted with human peripheral blood mononuclear cells (PBMCs) was assessed. Results. Injection of 200 106 human PBMCs intraperitoneally (IP) into sub-lethally (3.0 Gy) irradiated NOD/SCID mice also given anti-asialo GM1 antibodies IP 1 day prior and 8 days after transplantation induced lethal xenogeneic GVHD in all tested mice. Co-injection of 2 106 MSCs IP on day 0 did not prevent lethal xenogeneic GVHD induced by injection of human PBMCs. Similarly, injection of 30 106 human PBMCs IP into sub-lethally (2.5 Gy) irradiated NSG mice induced a lethal xenogeneic GVHD in all tested mice. Injection of 3 106 MSCs IP on days 0, 7, 14 and 21 did not prevent lethal xenogeneic GVHD induced by injection of human PBMCs. Conclusions. Injection of MSCs did not prevent xenogeneic GVHD in these two humanized mice models. [less ▲]

Detailed reference viewed: 45 (18 ULg)
Full Text
See detailRapamycin Prevents Experimental Sclerodermatous Chronic Graft-versus-Host Disease in mice
Belle, Ludovic ULg; Binsfeld, Marilène ULg; DUBOIS, Sophie ULg et al

in Belgian Journal of Hematology (2012), Abstracts book(Supplement of 27th General Meeting of the Belgian Hematological Society), 14

Detailed reference viewed: 7 (6 ULg)
Full Text
Peer Reviewed
See detailRapamycin prevents experimental sclerodermatous chronic graft-versus-host disease in mice
Belle, Ludovic ULg; Binsfeld, Marilène ULg; DUBOIS, Sophie ULg et al

Conference (2012)

Background: The most widely used mice model of chronic graft-versus-host disease (cGvHD) is an MHC-matched bone marrow transplantation model of sclerodermatous cGvHD. A limitation of that model is that ... [more ▼]

Background: The most widely used mice model of chronic graft-versus-host disease (cGvHD) is an MHC-matched bone marrow transplantation model of sclerodermatous cGvHD. A limitation of that model is that mortality is relatively low, making difficult to study the impact of potentially therapeutic compounds. Aims: To develop a more severe model of cGVHD and to assess the impact of Rapamycin administration in that model. Results: Lethally irradiated Balb/C mice were injected with 10x106 bone marrow cells and 70x106 splenocytes from B10.D2 donor mice. Twenty-one days later, all mice developed cGvHD. For the severe model, donor B10.D2 mice were injected with 0.5x106 splenocytes from Balb/C twenty-one days before transplantation. All mice from the severe model (n=8) died a median of 32 days while 3 of 7 mice in the classical model survived beyond day 52. Mean survival was decreased in the severe model compared to the classical model (32 days versus 37 days; p=0.0185). Recipient mice in the severe group experienced higher weight loss, hair loss and skin fi brosis. Numbers of T lymphocytes (231.9 ± 151.4 versus 951 ± 532.8; p=0.0032) and CD4+ T cells (63.25 ± 41.93 versus 135.0 ± 14.39; p=0.0018) per microliter of blood at day 21 were lower in the severe group than in the classical model. Moreover, number of regulatory T cells (Tregs) was decreased in the severe model (1.250 ± 0.8864 versus 8.000 ± 6.753; p=0.0151). We then investigated whether rapamycin administration could prevent GVHD in the severe model. All (n=8) mice treated with PBS (placebo) died a median of 32 days after transplantation, while 6 of 8 mice given 1 mg/kg/day i.p. rapamycin survived beyond day 52 (p=0.0012). Number of Tregs/μl was higher at day 21 in rapamycin-treated mice than in mice given PBS (2.000±1.195 versus 1.250±0.8864; p=0.0796). Moreover, number of naïve CD4+T (10.00±4.192 versus 30.25±5.185; p= 0.0089) and effector memory T cells (EMT) (30.67±3.180 versus 67.33±7.881; p= 0.0125) were higher in rapamycin mice. Finally, proliferation of EMT (assessed by fl ow cytometry using Ki-67) was higher in PBS than in rapamycin mice (45.28%±4.084 versus 31.90%± 2.003; p=0.0474). Conclusion: We have developed a mice model of severe cGVHD. Interestingly, rapamycin prevented death from cGVHD in that model, perhaps through in vivo expansion of Treg. [less ▲]

Detailed reference viewed: 44 (15 ULg)
Full Text
See detailBone marrow-derived mesenchymal stromal cells failed to prevent experimental xenogeneic graft-versus-host disease
Bruck, France; de Leval, Laurence; Belle, Ludovic ULg et al

Poster (2012)

Detailed reference viewed: 27 (9 ULg)
Full Text
Peer Reviewed
See detailImatinib and Nilotinib Inhibit Hematopoietic Progenitor Cell Growth, but Do Not Prevent Adhesion, Migration and Engraftment of Human Cord Blood CD34+ Cells
Belle, Ludovic ULg; Bruck, France; FOGUENNE, Jacques ULg et al

in PLoS ONE (2012), 7(12), 52564

Background: The availability of tyrosine kinase inhibitors (TKIs) has considerably changed the management of Philadelphia chromosome positive leukemia. The BCR-ABL inhibitor imatinib is also known to ... [more ▼]

Background: The availability of tyrosine kinase inhibitors (TKIs) has considerably changed the management of Philadelphia chromosome positive leukemia. The BCR-ABL inhibitor imatinib is also known to inhibit the tyrosine kinase of the stem cell factor receptor, c-Kit. Nilotinib is 30 times more potent than imatinib towards BCR-ABL in vitro. Studies in healthy volunteers and patients with chronic myelogenous leukemia or gastrointestinal stromal tumors have shown that therapeutic doses of nilotinib deliver drug levels similar to those of imatinib. The aim of this study was to compare the inhibitory effects of imatinib and nilotinib on proliferation, differentiation, adhesion, migration and engraftment capacities of human cord blood CD34+ cells. Design and Methods: After a 48-hour cell culture with or without TKIs, CFC, LTC-IC, migration, adhesion and cell cycle analysis were performed. In a second time, the impact of these TKIs on engraftment was assessed in a xenotransplantation model using NOD/SCID/IL-2Rc (null) mice. <br />Results: TKIs did not affect LTC-IC frequencies despite in vitro inhibition of CFC formation due to inhibition of CD34+ cell cycle entry. Adhesion of CD34+ cells to retronectin was reduced in the presence of either imatinib or nilotinib but only at high concentrations. Migration through a SDF-1a gradient was not changed by cell culture in the presence of TKIs. Finally, bone marrow cellularity and human chimerism were not affected by daily doses of imatinib and nilotinib in a xenogenic transplantation model. No significant difference was seen between TKIs given the equivalent affinity of imatinib and nilotinib for KIT. <br />Conclusions: These data suggest that combining non-myeloablative conditioning regimen with TKIs starting the day of the transplantation could be safe. [less ▲]

Detailed reference viewed: 38 (16 ULg)
Full Text
See detailSTEM CELL IN THE TREATMENT OF TENDONITIS IN EQUINE PATIENTS
Verwilghen, Denis ULg; Briquet, Alexandra ULg; Gothot, André ULg et al

Poster (2010, May 07)

Detailed reference viewed: 101 (16 ULg)
Full Text
Peer Reviewed
See detailProlonged ex vivo culture of human bone marrow mesenchymal stem cells influences their supportive activity toward NOD/SCID -repopulating cells and committed progenitor cells of B lymphoid and myeloid lineages
Briquet, Alexandra ULg; Dubois, Sophie ULg; Bekaert, Sandrine ULg et al

in Haematologica (2010), 95(1), 47-56

Background Bone marrow (BM) mesenchymal stem cells (MSC) support proliferation and differentiation of hematopoietic progenitor cells (HPC) in vitro. Since they represent a rare subset of BM cells, MSC ... [more ▼]

Background Bone marrow (BM) mesenchymal stem cells (MSC) support proliferation and differentiation of hematopoietic progenitor cells (HPC) in vitro. Since they represent a rare subset of BM cells, MSC preparations for clinical purposes involves a preparative step of ex vivo multiplication. The aim of our study was to analyze the influence of culture duration on MSC supportive activity. DESIGN AND METHODS: MSC were expanded for up to 10 passages. MSC and CD34(+) cells were seeded in cytokine-free co-cultures after which the phenotype, clonogenic capacity and in vivo repopulating activity of harvested hematopoietic cells were assessed. RESULTS: Early passage MSC supported HPC expansion and differentiation toward both B lymphoid and myeloid lineages. Late passage MSC did not support HPC and myeloid cell outgrowth but maintained B cell supportive ability. In vitro maintenance of NOD/SCID mouse repopulating cells cultured for one week in contact with MSC was effective until the fourth MSC passage and declined afterwards. CD34(+) cells achieved higher levels of engraftment in NOD/SCID mice when co-injected with early passage MSC; however MSC expanded beyond 9 passages were ineffective in promoting CD34(+) cell engraftment. Non-contact cultures indicated that MSC supportive activity involved diffusible factors. Among these, interleukin (IL)-6 and IL-8 contributed to the supportive activity of early passage MSC but not of late passage MSC. MSC phenotype as well as fat, bone and cartilage differentiation capacity did not change during MSC culture. Conclusions Extended MSC culture alters their supportive ability toward HPC without concomitant changes in phenotype and differentiation capacity. [less ▲]

Detailed reference viewed: 80 (42 ULg)
Full Text
Peer Reviewed
See detailThe umbilical cord matrix is a better source of mesenchymal stem cells (MSC) than the umbilical cord blood.
Zeddou, Mustapha ULg; Briquet, Alexandra ULg; Relic, Biserka ULg et al

in Cell Biology International (2010), 34(7), 693-701

Many studies have drawn attention to the emerging role of MSC (mesenchymal stem cells) as a promising population supporting new clinical concepts in cellular therapy. However, the sources from which these ... [more ▼]

Many studies have drawn attention to the emerging role of MSC (mesenchymal stem cells) as a promising population supporting new clinical concepts in cellular therapy. However, the sources from which these cells can be isolated are still under discussion. Whereas BM (bone marrow) is presented as the main source of MSC, despite the invasive procedure related to this source, the possibility of isolating sufficient numbers of these cells from UCB (umbilical cord blood) remains controversial. Here, we present the results of experiments aimed at isolating MSC from UCB, BM and UCM (umbilical cord matrix) using different methods of isolation and various culture media that summarize the main procedures and criteria reported in the literature. Whereas isolation of MSC were successful from BM (10:10) and (UCM) (8:8), only one cord blood sample (1:15) gave rise to MSC using various culture media [DMEM (Dulbecco's modified Eagle's medium) +5% platelet lysate, DMEM+10% FBS (fetal bovine serum), DMEM+10% human UCB serum, MSCGM] and different isolation methods [plastic adherence of total MNC (mononuclear cells), CD3+/CD19+/CD14+/CD38+-depleted MNC and CD133+- or LNGFR+-enriched MNC]. MSC from UCM and BM were able to differentiate into adipocytes, osteocytes and hepatocytes. The expansion potential was highest for MSC from UCM. The two cell populations had CD90+/CD73+/CD105+ phenotype with the additional expression of SSEA4 and LNGFR for BM MSC. These results clearly exclude UCB from the list of MSC sources for clinical use and propose instead UCM as a rich, non-invasive and abundant source of MSC. [less ▲]

Detailed reference viewed: 64 (16 ULg)