References of "Breeur, Danielle"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailPirlindole and dehydropirlindole protect rat cultured neuronal cells against oxidative stress-induced cell death through a mechanism unrelated to MAO-A inhibition
Boland, André ULg; Gerardy, J.; Breeur, Danielle ULg et al

in British Journal of Pharmacology (2002), 135(3), 713-720

1 It has been shown that the MAO (monoamine oxidase)-B inhibitor deprenyl (DPR, selegiline) protects some cell types against oxidative stress. By decreasing H2O2 production, MAO-A inhibitors could also ... [more ▼]

1 It has been shown that the MAO (monoamine oxidase)-B inhibitor deprenyl (DPR, selegiline) protects some cell types against oxidative stress. By decreasing H2O2 production, MAO-A inhibitors could also reduce oxidative stress. 2 This study reports the effect of the MAO-A inhibitors, pirlindole (PIR), dehydropirlindole (DHP), brofaromine (BRO) and moclobemide (MCL) on primary-cultured brain cells exposed to iron-mediated toxicity. A comparison with trolox (TRO), a hydrosoluble vitamin-E analogue that protects against such an induced stress, was performed. 3 Rat hippocampal or cortical cultured cells were exposed either to 2 mum FeSO4 alone or in the presence of PIR, DHP, BRO, DPR, MCL or TRO. Cell survival (lactate-dehydrogenase measurements, 16 h incubation), intracellular peroxide production (DCF-fluorescence. I h incubation), lipoperoxidation (TBARS-fluorescence, 6 h incubation) and mitochondrial function (MTT-test, 16 h incubation) were assessed. 4 PIR, DHP and TRO significantly protected cultures (P<0.05) against Fe2+-induced toxicity in a concentration-dependent manner. The EC50s of these compounds were 6, 12 and 19 muM, respectively, in hippocampal cells. For cortical cell cultures incubated in the presence of iron and PIR or DHP, EC50s were 5 and 6 muM respectively. All Hill coefficients were close to unity. BRO, MCL and DPR were not protective in any type of culture. The IC50s for the inhibition of MAO-A were 2, 2 and 0.2 muM for PIR, DHP and BRO, respectively. PIR, DHP and TRO, but not DPR, induced a significant decrease in both intracellular peroxide production and lipoperoxidation. They also improved mitochondrial function. 5 These experiments show that PIR and DHP can protect hippocampal and cortical neurons against oxidative stress at pharmacologically relevant concentrations. This protective effect seems unrelated to inhibition of MAO-A, but possibly involves free radical scavenging. [less ▲]

Detailed reference viewed: 49 (17 ULg)
Full Text
See detailEffect of intermittent and continuous exposure to electromagnetic fields on cultured hippocampal cells
Boland, André ULg; Gabriel, Danielle ULg; Breeur, Danielle ULg et al

in Bioelectromagnetics (2002), 23(2), 97-105

This study was designed to assess the effect of 50 Hz electromagnetic fields (EMFs) on hippocampal cell cultures in the presence or absence of either sodium nitroprusside (SNP, a NO donor) or Fe2+ induced ... [more ▼]

This study was designed to assess the effect of 50 Hz electromagnetic fields (EMFs) on hippocampal cell cultures in the presence or absence of either sodium nitroprusside (SNP, a NO donor) or Fe2+ induced oxidative stress. One week old cultured rat hippocampal cells were exposed to either intermittent EMFs (IEMFs, 50 Hz, 0-5 mT, 1 min ON/OFF cycles, repeated 10 times every 2 h, 6 times/day during 48 h) or continuous EMFs (CEMFs, 50 Hz, 0-5 mT for 48 h). In a second set of experiments, the effect on such EMFs applied in combination with oxidative stress induced by 0.5 microM Fe2+ or SNP was estimated. At the end of both sets of experiments, cell mortality was assessed by lactate dehydrogenase measurements (LDH). Neither type of exposure to EMFs was observed to modify the basal rate of cell mortality. The exposure to CEMFs in presence of either NO or Fe2+ did not induce any significant increase in cell death. However, when cells were exposed to EMFs in the presence of NO, we observed a significant increase in cell death of 11 and 23% (P<0.001) at 2.5 and 5 mT, respectively. This effect had some specificity because IEMFs did not modify the effect of Fe2+ on cell mortality. Although the effects of IEMFs reported in this study were only observed at very high intensities, our model may prove valuable in trying to identify one cellular target of EMFs. [less ▲]

Detailed reference viewed: 26 (6 ULg)