References of "Bovy, Benoît"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailEvaluating ethane and methane emissions associated with the development of oil and natural gas extraction in North America
Franco, Bruno ULg; Mahieu, Emmanuel ULg; Emmons, L. K. et al

in Environmental Research Letters (2016), 11(4), 044010

Sharp rises in the atmospheric abundance of ethane (C2H6) have been detected from 2009 onwards in the Northern Hemisphere as a result of the unprecedented growth in the exploitation of shale gas and tight ... [more ▼]

Sharp rises in the atmospheric abundance of ethane (C2H6) have been detected from 2009 onwards in the Northern Hemisphere as a result of the unprecedented growth in the exploitation of shale gas and tight oil reservoirs in North America. Using time series of C2H6 total columns derived from ground-based FTIR observations made at five selected NDACC sites, we characterize the recent C2H6 evolution and determine growth rates of ~5%/yr at mid-latitudes and of ~3%/yr at remote sites. Results from CAM-chem simulations with the HTAP2 bottom-up inventory for anthropogenic emissions are found to greatly underestimate the current C2H6 abundances. Doubling global emissions is required to reconcile the simulations and the observations prior to 2009. We further estimate that North American anthropogenic C2H6 emissions have increased from 1.6 Tg/yr in 2008 to 2.8 Tg/yr in 2014, i.e. by 75% over these six years. We also completed a second simulation with new top-down emissions of C2H6 from North American oil and gas activities, biofuel consumption and biomass burning, inferred from space-borne observations of methane (CH4) from GOSAT. In this simulation, GEOS-Chem is able to reproduce FTIR measurements at the mid-latitudinal sites, underscoring the impact of the North American oil and gas development on the current C2H6 abundance. Finally we estimate that the North American oil and gas emissions of CH4, a major greenhouse gas, grew from 20 to 35 Tg/yr over the period 2008 to 2014, in association with the recent C2H6 rise. [less ▲]

Detailed reference viewed: 54 (13 ULg)
Full Text
Peer Reviewed
See detailDiurnal cycle and multi-decadal trend of formaldehyde in the remote atmosphere near 46° N
Franco, Bruno ULg; Marais, Eloise A.; Bovy, Benoît ULg et al

in Atmospheric Chemistry and Physics (2016), 16

Only very few long-term records of formaldehyde (HCHO) exist that are suitable for trend analysis. Furthermore, many uncertainties remain as to its diurnal cycle, representing a large short-term ... [more ▼]

Only very few long-term records of formaldehyde (HCHO) exist that are suitable for trend analysis. Furthermore, many uncertainties remain as to its diurnal cycle, representing a large short-term variability superimposed on seasonal and inter-annual variations that should be accounted for when comparing ground-based observations to e.g., model results. In this study, we derive a multi-decadal time series (January 1988 – June 2015) of HCHO total columns from ground-based high-resolution Fourier transform infrared (FTIR) solar spectra recorded at the high-altitude station of Jungfraujoch (Swiss Alps, 46.5° N, 8.0° E, 3580 m a.s.l.), allowing for the characterization of the mid-latitudinal atmosphere for background conditions. First we investigate the HCHO diurnal variation, peaking around noontime and mainly driven by the intra-day insolation modulation and methane (CH4) oxidation. We also characterize quantitatively the diurnal cycles by adjusting a parametric model to the observations, which links the daytime to the HCHO columns according to the monthly intra-day regimes. It is then employed to scale all the individual FTIR measurements on a given daytime in order to remove the effect of the intra-day modulation for improving the trend determination and the comparison with HCHO columns simulated by the state-of-the-art chemical transport model GEOS-Chem v9-02. Such a parametric model will be useful to scale the Jungfraujoch HCHO columns on satellite overpass times in the framework of future calibration/validation efforts of space borne sensors. GEOS-Chem sensitivity tests suggest then that the seasonal and inter-annual HCHO column variations above Jungfraujoch are predominantly led by the atmospheric CH4 oxidation, with a maximum contribution of 25 % from the anthropogenic non-methane volatile organic compound precursors during wintertime. Finally, trend analysis of the so-scaled 27-year FTIR time series reveals a long-term evolution of the HCHO columns in the remote troposphere to be related with the atmospheric CH4 fluctuations and the short-term OH variability: +2.9 %/yr between 1988 and 1995, -3.7 %/yr over 1996-2002 and +0.8/% yr from 2003 onwards. [less ▲]

Detailed reference viewed: 45 (18 ULg)
Full Text
Peer Reviewed
See detailRetrieval of HCFC-142b (CH3CClF2) from ground-based high-resolution infrared solar spectra: Atmospheric increase since 1989 and comparison with surface and satellite measurements
Mahieu, Emmanuel ULg; Lejeune, Bernard ULg; Bovy, Benoît ULg et al

in Journal of Quantitative Spectroscopy & Radiative Transfer (2016)

We have developed an approach for retrieving HCFC-142b (CH3CClF2) from ground-based high-resolution infrared solar spectra, using its ν7 band Q branch in the 900–906 cm-1 interval. Interferences by HNO3 ... [more ▼]

We have developed an approach for retrieving HCFC-142b (CH3CClF2) from ground-based high-resolution infrared solar spectra, using its ν7 band Q branch in the 900–906 cm-1 interval. Interferences by HNO3, CO2 and H2O have to be accounted for. Application of this approach to observations recorded within the framework of long-term monitoring activities carried out at the northern mid-latitude, high-altitude Jungfraujoch station in Switzerland (46.5°N, 8.0°E, 3580 m above sea level) has provided a total column times series spanning the 1989 to mid-2015 time period. A fit to the HCFC-142b daily mean total column time series shows a statistically-significant long-term trend of (1.23±0.08×1013 molec cm-2) per year from 2000 to 2010, at the 2-σ confidence level. This corresponds to a significant atmospheric accumulation of (0.94±0.06) ppt (1 ppt=10-12) per year for the mean tropospheric mixing ratio, at the 2−σ confidence level. Over the subsequent time period (2010–2014), we note a significant slowing down in the HCFC-142b buildup. Our ground-based FTIR (Fourier Transform Infrared) results are compared with relevant data sets derived from surface in situ measurements at the Mace Head and Jungfraujoch sites of the AGAGE (Advanced Global Atmospheric Gases Experiment) network and from occultation measurements by the ACE-FTS (Atmospheric Chemistry Experiment-Fourier Transform Spectrometer) instrument on-board the SCISAT satellite. [less ▲]

Detailed reference viewed: 14 (1 ULg)
See detailSoil production and hillslope transport in mid-latitudes during the last glacial-interglacial cycle: A combined data and modelling approach in northern Ardennes
Bovy, Benoît ULg; Braun, Jean; Demoulin, Alain ULg

Conference (2015, October)

The relative efficiency of various hillslope processes through Quaternary glacial-interglacial cycles in the mid-latitudes is not well constrained. Based on a unique set of topographic and soil thickness ... [more ▼]

The relative efficiency of various hillslope processes through Quaternary glacial-interglacial cycles in the mid-latitudes is not well constrained. Based on a unique set of topographic and soil thickness data in the Ardennes (Belgium), we combine the new CLICHE model of climate-dependent hillslope evolution with an inversion algorithm in order to get deeper insight into the ways and timing of hillslope dynamics under one such climatic cycle. We simulate the evolution of a synthetic hill reproducing the terrain attribute distributions of the hillslopes of a ~2500 km2 real area under a simple two-stage 120-kyr-long climatic scenario with linear transitions. The inversion method samples a misfit function in the model parameter space, based on estimates of the fit of topographic derivative distributions in classes of soil thickness and of the relative frequencies of the predicted soil thickness classes. Though the inversion results show convergence patterns for several parameters, no unique solution emerges. We obtain five clusters of good fits, whose centroids are taken as acceptable model solutions. Based on the predicted time series of average denudation rate and soil thickness, plus snapshots of the soil distribution at characteristic times, we compare these solutions with independent data not involved in the misfit function and identify the most realistic one. Providing first-order estimates of several parameters that compare well with published data, it shows that denudation rates increase dramatically at both warm-cold and cold-warm transitions when the mean annual temperature passes through the [0, -5°C] range. It also underlines the overwhelming importance of gelifluction in transporting soil and shaping hillslopes. [less ▲]

Detailed reference viewed: 18 (1 ULg)
Full Text
Peer Reviewed
See detailGaz à effet de serre indirects et qualité de l'air aux latitudes moyennes de l'hémisphère nord : tendances à long terme et variabilité déduites de télémesures effectuées au Jungfraujoch (Alpes suisses, 3580 m)
Franco, Bruno ULg; Bader, Whitney ULg; Lejeune, Bernard ULg et al

Conference (2015, July 01)

Indirect greenhouse gases and air quality at Northern Hemisphere mid-latitudes: long-term trends and variability derived from ground-based remote sensing at Jungfraujoch (Swiss Alps, 3580 m a.s.l.). We ... [more ▼]

Indirect greenhouse gases and air quality at Northern Hemisphere mid-latitudes: long-term trends and variability derived from ground-based remote sensing at Jungfraujoch (Swiss Alps, 3580 m a.s.l.). We present an overview of recent investigations conducted by the Solar and Atmospheric Physics Infrared Group at the University of Liège and dedicated to the long-term monitoring of atmospheric gases with an indirect greenhouse effect and affecting air quality at Northern Hemisphere mid-latitudes. Gas concentrations are derived from high-resolution solar spectra recorded at the Jungfraujoch station (Swiss Alps, 46.5° N, 8.0° E, 3580 m a.s.l.), using Fourier transform infrared spectrometers. Time series obtained from these observations, along with satellite measurements and simulations from numerical models, allow for the study of both variability and recent evolution of these species and are critical for air quality monitoring and understanding climate changes. [less ▲]

Detailed reference viewed: 58 (9 ULg)
Full Text
See detailRecent ethane increase above North America: comparison between FTIR measurements and model simulations
Franco, Bruno ULg; Bader, Whitney ULg; Mahieu, Emmanuel ULg et al

Conference (2015, June 11)

Ethane (C2H6) has a large impact on tropospheric composition and air quality because of its involvement in the global VOC (volatile organic compound) – HOx – NOx chemistry responsible for generating and ... [more ▼]

Ethane (C2H6) has a large impact on tropospheric composition and air quality because of its involvement in the global VOC (volatile organic compound) – HOx – NOx chemistry responsible for generating and destroying tropospheric ozone. By acting as a major sink for tropospheric OH radicals, the abundance of C2H6 influences the atmospheric content of carbon monoxide and impacts the lifetime of methane. Moreover, it is an important source of PAN, a thermally unstable reservoir for NOx radicals. On a global scale, the main sources of C2H6 are leakage from the production, transport of natural gas loss, biofuel consumption and biomass burning, mainly located in the Northern Hemisphere. Due to its relatively long lifetime of approximately two months, C2H6 is a sensitive indicator of tropospheric pollution and transport. Using an optimized retrieval strategy (see Franco et al., 2014), we present here a 20-year long-term time series of C2H6 column abundance retrieved from ground-based Fourier Transform InfraRed (FTIR) solar spectra recorded from 1994 onwards at the high-altitude station of Jungfraujoch (Swiss Alps, 46.5° N, 3580 m a.s.l.), part of the Network for the Detection of Atmospheric Composition Change (NDACC, see http://www.ndacc.org). After a regular 1994 – 2008 decrease of the C2H6 amounts, which is very consistent with prior major studies (e.g., Aydin et al., 2011; Simpson et al., 2012) and our understanding of global C2H6 emissions, trend analysis using a bootstrap resampling tool reveals a C2H6 upturn and a statistically-significant sharp burden increase from 2009 onwards (Franco et al., 2014). We hypothesize that this observed recent increase in C2H6 could affect the whole Northern Hemisphere and may be related to the recent massive growth in the exploitation of shale gas and tight oil reservoirs. This hypothesis is supported by measurements derived from solar occultation observations performed since 2004 by the Atmospheric Chemistry Experiment – Fourier Transform Spectrometer (ACE-FTS) instrument and at other NDACC sites, namely Toronto (44° N) and Thule (77° N). Indeed, the recent rates of changes characterizing these data sets are consistent in magnitude and sign with the one derived from the FTIR measurements at Jungfraujoch. In contrast, the ethane time series form Lauder (45° S) shows a monotonic decrease over the last two decades. Investigating both the cause and impact on air quality of the C2H6 upturn should be a high priority for the atmospheric chemistry community. [less ▲]

Detailed reference viewed: 127 (9 ULg)
Full Text
See detailInvestigation of the consistency of the recent CH4 increase derived from NDACC-FTIR, ACE-FTS and GEOS-Chem
Bader, Whitney ULg; Conway, Stephanie; Strong, Kim et al

Conference (2015, May 21)

We present an update on the status of the recent methane increase study based on six FTIR ground-based sites, ACE-FTS satellite occultations and GEOS-Chem simulation.

Detailed reference viewed: 52 (7 ULg)
Full Text
See detailUse of GEOS-Chem for the interpretation of long-term FTIR measurements at the Jungfraujoch and other NDACC sites
Mahieu, Emmanuel ULg; Bovy, Benoît ULg; Bader, Whitney ULg et al

Poster (2015, May 04)

We present recent and ongoing investigations using 3D CTM GEOS-Chem model simulations for the interpretation of long-term FTIR measurements performed at selected NDACC sites.

Detailed reference viewed: 47 (15 ULg)
Full Text
Peer Reviewed
See detailRetrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations
Franco, Bruno ULg; Hendrick, François; Van Roozendael, Michel et al

in Atmospheric Measurement Techniques (2015), 8

As an ubiquitous product of the oxidation of many volatile organic compounds (VOCs), formaldehyde (HCHO) plays a key role as a short-lived and reactive intermediate in the atmospheric photo-oxidation ... [more ▼]

As an ubiquitous product of the oxidation of many volatile organic compounds (VOCs), formaldehyde (HCHO) plays a key role as a short-lived and reactive intermediate in the atmospheric photo-oxidation pathways leading to the formation of tropospheric ozone and secondary organic aerosols. In this study, HCHO profiles have been successfully retrieved from ground-based Fourier transform infrared (FTIR) solar spectra and UV-visible Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) scans recorded during the July 2010–December 2012 time period at the Jungfraujoch station (Swiss Alps, 46.5° N, 8.0° E, 3580m a.s.l.). Analysis of the retrieved products has revealed different vertical sensitivity between both remote sensing techniques. Furthermore, HCHO amounts simulated by two state-of-the-art chemical transport models (CTMs), GEOSChem and IMAGES v2, have been compared to FTIR total columns and MAX-DOAS 3.6–8 km partial columns, accounting for the respective vertical resolution of each ground-based instrument. Using the CTM outputs as the intermediate, FTIR and MAX-DOAS retrievals have shown consistent seasonal modulations of HCHO throughout the investigated period, characterized by summertime maximum and wintertime minimum. Such comparisons have also highlighted that FTIR and MAX-DOAS provide complementary products for the HCHO retrieval above the Jungfraujoch station. Finally, tests have revealed that the updated IR parameters from the HITRAN 2012 database have a cumulative effect and significantly decrease the retrieved HCHO columns with respect to the use of the HITRAN 2008 compilation. [less ▲]

Detailed reference viewed: 97 (40 ULg)
Full Text
See detailHalogenated source gases measured by FTIR at the Jungfraujoch station: updated trends and new target species
Mahieu, Emmanuel ULg; Bader, Whitney ULg; Bovy, Benoît ULg et al

in Geophysical Research Abstracts (2015, April 13), 17

In this contribution, we present decadal time series of halogenated source gases monitored at the high altitude station of the Jungfraujoch (46.5°N, 8°E, 3580 m asl) with Fourier Transform Infared (FTIR ... [more ▼]

In this contribution, we present decadal time series of halogenated source gases monitored at the high altitude station of the Jungfraujoch (46.5°N, 8°E, 3580 m asl) with Fourier Transform Infared (FTIR) spectrometers, within the framework of the Network for the Detection of Atmospheric Composition Change. Total column trends presented in previous studies for CFC-11, -12 and HCFC-22, CCl4, HCFC-142b, CF4 and SF6 will be updated using the latest available Jungfraujoch solar observations. Investigations dealing with the definition of approaches to retrieve additional halogenated source gases from FTIR spectra will also be evoked. Our trend results will be critically discussed and compared with measurements performed in the northern hemisphere by the in situ networks. [less ▲]

Detailed reference viewed: 49 (12 ULg)
Full Text
Peer Reviewed
See detailRecent increase of ethane detected in the remote atmosphere of the Northern Hemisphere
Franco, Bruno ULg; Bader, Whitney ULg; Bovy, Benoît ULg et al

Conference (2015, April 13)

Ethane (C2H6) has a large impact on tropospheric composition and air quality because of its involvement in the global VOC (volatile organic compound) – HOx – NOx chemistry responsible for generating and ... [more ▼]

Ethane (C2H6) has a large impact on tropospheric composition and air quality because of its involvement in the global VOC (volatile organic compound) – HOx – NOx chemistry responsible for generating and destroying tropospheric ozone. By acting as a major sink for tropospheric OH radicals, the abundance of C2H6 influences the atmospheric content of carbon monoxide and impacts the lifetime of methane. Moreover, it is an important source of PAN, a thermally unstable reservoir for NOx radicals. On a global scale, the main sources of C2H6 are leakage from the production, transport of natural gas loss, biofuel consumption and biomass burning, mainly located in the Northern Hemisphere. Due to its relatively long lifetime of approximately two months, C2H6 is a sensitive indicator of tropospheric pollution and transport. Using an optimized retrieval strategy (see Franco et al., 2014), we present here a 20-year long-term time series of C2H6 column abundance retrieved from ground-based Fourier Transform InfraRed (FTIR) solar spectra recorded from 1994 onwards at the high-altitude station of Jungfraujoch (Swiss Alps, 46.5° N, 3580 m a.s.l.), part of the Network for the Detection of Atmospheric Composition Change (NDACC, see http://www.ndacc.org). After a regular 1994 – 2008 decrease of the C2H6 amounts, which is very consistent with prior major studies (e.g., Aydin et al., 2011; Simpson et al., 2012) and our understanding of global C2H6 emissions, trend analysis using a bootstrap resampling tool reveals a C2H6 upturn and a statistically-significant sharp burden increase from 2009 onwards (Franco et al., 2014). We hypothesize that this observed recent increase in C2H6 could affect the whole Northern Hemisphere and may be related to the recent massive growth in the exploitation of shale gas and tight oil reservoirs. This hypothesis is supported by measurements derived from solar occultation observations performed since 2004 by the Atmospheric Chemistry Experiment – Fourier Transform Spectrometer (ACE-FTS) instrument and at other NDACC sites, namely Toronto (44° N) and Thule (77° N). Indeed, the recent rates of changes characterizing these data sets are consistent in magnitude and sign with the one derived from the FTIR measurements at Jungfraujoch. In contrast, the ethane time series form Lauder (45° S) shows a monotonic decrease over the last two decades. Investigating both the cause and impact on air quality of the C2H6 upturn should be a high priority for the atmospheric chemistry community. [less ▲]

Detailed reference viewed: 173 (24 ULg)
Full Text
Peer Reviewed
See detailRetrieval of ethane from ground-based FTIR solar spectra using improved spectroscopy: recent burden increase above Jungfraujoch
Franco, Bruno ULg; Bader, Whitney ULg; Toon, G. C. et al

in Journal of Quantitative Spectroscopy & Radiative Transfer (2015), 160(C), 36-49

An improved spectroscopy is used to implement and optimize the retrieval strategy of ethane (C2H6) from ground-based Fourier Transform Infrared (FTIR) solar spectra recorded at the high-altitude station ... [more ▼]

An improved spectroscopy is used to implement and optimize the retrieval strategy of ethane (C2H6) from ground-based Fourier Transform Infrared (FTIR) solar spectra recorded at the high-altitude station of Jungfraujoch (Swiss Alps, 46.5° N, 8.0° E, 3580m a.s.l.). The improved spectroscopic parameters include C2H6 pseudo-lines in the 2720-3100 cm-1 range and updated line parameters for methyl chloride and ozone. These improved spectroscopic parameters allow for substantial reduction of the fitting residuals as well as enhanced information content. They also contribute to limiting oscillations responsible for ungeophysical negative mixing ratio profiles. This strategy has been successfully applied to the Jungfraujoch solar spectra available from 1994 onwards. The resulting time series is compared with C2H6 total columns simulated by the state-of-the-art chemical transport model GEOS-Chem. Despite very consistent seasonal cycles between both data sets, a negative systematic bias relative to the FTIR observations suggests that C2H6 emissions are underestimated in the current inventories implemented in GEOS-Chem. Finally, C2H6 trends are derived from the FTIR time series, revealing a statistically-significant sharp increase of the C2H6 burden in the remote atmosphere above Jungfraujoch since 2009. Evaluating cause of this change in the C2H6 burden, which may be related to the recent massive growth of shale gas exploitation in North America, is of primary importance for atmospheric composition and air quality in the Northern Hemisphere. [less ▲]

Detailed reference viewed: 184 (62 ULg)
Full Text
Peer Reviewed
See detailControls on knickpoint migration in a drainage network of the moderately uplifted Ardennes Plateau, Western Europe
Beckers, Arnaud ULg; Bovy, Benoît ULg; Hallot, Eric ULg et al

in Earth Surface Processes & Landforms (2015), 40

Much research has been devoted to the development of numerical models of river incision. In settings where bedrock channel erosion prevails, numerous studies have used field data to calibrate the widely ... [more ▼]

Much research has been devoted to the development of numerical models of river incision. In settings where bedrock channel erosion prevails, numerous studies have used field data to calibrate the widely acknowledged stream power model of incision and to discuss the impact of variables that do not appear explicitly in the model’s simplest form. However, most studies have been conducted in areas of active tectonics, displaying a clear geomorphic response to the tectonic signal. Here, we analyze the traces left in the drainage network 0.7 My after the Ardennes region (western Europe) underwent a moderate 100–150 m uplift. We identify a set of knickpoints that have traveled far upstream in the Ourthe catchment, following this tectonic perturbation. Using a misfit function based on time residuals, our best fit of the stream power model parameters yields m= 0.75 and K = 4.63 × 10-8 m-0.5y-1. Linear regression of the model time residuals against quantitative expressions of bedrock resistance to erosion shows that this variable does not correlate significantly with the residuals. By contrast, proxies for position in the drainage system prove to be able to explain 76% of the residual variance. High time residuals correlate with knickpoint position in small tributaries located in the downstream part of the Ourthe catchment,where some threshold was reached very early in the catchment’s incision history. Removing the knickpoints stopped at such thresholds from the data set, we calculate an improved m= 0.68 and derive a scaling exponent of channel width against drainage area of 0.32, consistent with the average value compiled by Lague for steady state incising bedrock rivers. [less ▲]

Detailed reference viewed: 19 (0 ULg)
Full Text
Peer Reviewed
See detailLong-term evolution and seasonal modulation of methanol above Jungfraujoch (46.5°N, 8.0°E): Optimisation of the retrieval strategy, comparison with model and independant observations
Bader, Whitney ULg; Stavrakou, T; Muller, J-F et al

in Atmospheric Measurement Techniques (2014), 7

Methanol (CH3OH) is the second most abundant organic compound in the Earth's atmosphere after methane. In this work, we present the first long-term time series of methanol total, lower tropospheric and ... [more ▼]

Methanol (CH3OH) is the second most abundant organic compound in the Earth's atmosphere after methane. In this work, we present the first long-term time series of methanol total, lower tropospheric and upper tropospheric-lower stratospheric partial columns derived from the analysis of high resolution Fourier transform infrared solar spectra recorded at the Jungfraujoch station (46.5° N, 3580 m a.s.l.). The retrieval of methanol is very challenging due to strong absorptions of ozone in the region of the selected υ8 band of CH3OH. Two wide spectral intervals have been defined and adjusted in order to maximize the information content. Methanol does not exhibit a significant trend over the 1995–2012 time period, but a strong seasonal modulation characterized by maximum values and variability in June–July, minimum columns in winter and a peak-to-peak amplitude of 130%. In situ measurements performed at the Jungfraujoch and ACE-FTS occultations give similar results for the methanol seasonal variation. The total and lower tropospheric columns are also compared with IMAGESv2 model simulations. There is no systematic bias between the observations and IMAGESv2 but the model underestimates the peak-to-peak amplitude of the seasonal modulations. [less ▲]

Detailed reference viewed: 92 (33 ULg)
Full Text
Peer Reviewed
See detailRetrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations
Franco, Bruno ULg; Hendrick, François; Van Roozendael, Michel et al

Conference (2014, November 07)

As a ubiquitous product of the oxidation of many Volatile Organic Compounds (VOCs), formaldehyde (HCHO) plays a key role as a short-lived and reactive intermediate in the atmospheric photo-oxidation ... [more ▼]

As a ubiquitous product of the oxidation of many Volatile Organic Compounds (VOCs), formaldehyde (HCHO) plays a key role as a short-lived and reactive intermediate in the atmospheric photo-oxidation pathways leading to the formation of tropospheric ozone and secondary organic aerosols. We have successfully retrieved HCHO columns from ground-based Fourier Transform Infrared (FTIR) solar spectra and UV-Visible Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) scans recorded during the July 2010 – December 2012 time period at the Jungfraujoch station (Swiss Alps, 46.5 °N, 8.0 °E, 3580 m a.s.l.). Characterization of the retrieved products has revealed different vertical sensitivity between both remote sensing techniques. Furthermore, HCHO amounts simulated by two state-of-the-art Chemical Transport Models (CTMs), GEOS-Chem and IMAGESv2, have been compared to FTIR total columns and MAX-DOAS 3.6 – 8 km partial columns, accounting for the respective vertical resolution of each ground-based instrument. Using the CTMs outputs as intermediate, FTIR and MAX-DOAS retrievals have shown consistent seasonal modulations of HCHO throughout the investigated period, characterized by summertime maximum and wintertime minimum. Such comparisons have also highlighted that FTIR and MAX-DOAS provide complementary products for HCHO above the Jungfraujoch station. [less ▲]

Detailed reference viewed: 22 (7 ULg)
Full Text
See detailLong-term evolution and seasonal modulation of methanol above Jungfraujoch (46.5°N, 8.0°E): Optimisation of the retrieval strategy, comparison with model and independent observations
Bader, Whitney ULg; Stavrakou, J; Muller, J-F et al

Poster (2014, May)

Methanol (CH3OH) is the second most abundant organic compound in the Earth’s atmosphere after methane. In this work, we present the first long-term time series of methanol total, lower tropospheric and ... [more ▼]

Methanol (CH3OH) is the second most abundant organic compound in the Earth’s atmosphere after methane. In this work, we present the first long-term time series of methanol total, lower tropospheric and upper tropospheric-lower stratospheric partial columns derived from the analysis of high resolution Fourier transform infrared solar spectra recorded at the Jungfraujoch station (46.5°N, 3580 m a.s.l.). The retrieval of methanol is very challenging due to strong absorptions of ozone in the region of the selected 8 band of CH3OH. Two wide spectral intervals have been defined and adjusted in order to maximize the information content. Methanol does not exhibit a significant trend over the 1995-2012 time period, but a strong seasonal modulation characterized by maximum values and variability in June-July, minimum columns in winter and a peak-to-peak amplitude of 130 %. In situ measurements performed at the Jungfraujoch and ACE-FTS occultations give similar results for the methanol seasonal variation. The total and lower tropospheric columns are also compared with IMAGESv2 model simulations. There is no systematic bias between the observations and IMAGESv2 but the model underestimates the peak-to-peak amplitude of the seasonal modulations. [less ▲]

Detailed reference viewed: 44 (11 ULg)
Full Text
See detailSeeking for causes of recent methane increase: comparison between GEOS-Chem tagged simulations and FTIR column measurements above Jungfraujoch
Bader, Whitney ULg; Bovy, Benoît ULg; Wecht, K et al

Poster (2014, May)

Atmospheric CH4 reached 260% of the pre-industrial level (~700 ppb) due to increased emissions from anthropogenic sources. Globally averaged CH4 reached a new high of 1819 ± 1 ppb in 2012, an increase of ... [more ▼]

Atmospheric CH4 reached 260% of the pre-industrial level (~700 ppb) due to increased emissions from anthropogenic sources. Globally averaged CH4 reached a new high of 1819 ± 1 ppb in 2012, an increase of 6 ppb with respect to the previous year (WMO, Greenhouse gas Bulletin N.9, 2013). CH4 above Jungfraujoch increases at 0.53±0.19%/year during the late 90s to stabilize and reach a non significant trend from 2000 to 2005. Since 2006, atmospheric methane has been continuously increasing with a rate of 0.19±0.05 %/year. The attribution of this increase to any CH4 source is difficult since the current network is insufficient to characterize emissions by region and source process, emphasizing the need for source-tagged model simulations as it should provide us information on processes causing the increase of atmospheric methane since 2005/2006. [less ▲]

Detailed reference viewed: 79 (8 ULg)
Full Text
Peer Reviewed
See detailSpectrometric monitoring of atmospheric carbon tetrafluoride (CF4) above the Jungfraujoch station since 1989: evidence of continued increase but at a slowing rate
Mahieu, Emmanuel ULg; Zander, Rodolphe ULg; Toon, G. C. et al

in Atmospheric Measurement Techniques (2014), 7

The long-term evolution of the vertical column abundance of carbon tetrafluoride (CF4) above the high-altitude Jungfraujoch station (Swiss Alps, 46.5° N, 8.0° E, 3580 m a.s.l.) has been derived from the ... [more ▼]

The long-term evolution of the vertical column abundance of carbon tetrafluoride (CF4) above the high-altitude Jungfraujoch station (Swiss Alps, 46.5° N, 8.0° E, 3580 m a.s.l.) has been derived from the spectrometric analysis of Fourier transform infrared solar spectra recorded at that site between 1989 and 2012. The investigation is based on a multi-microwindow approach, two encompassing pairs of absorption lines belonging to the R-branch of the strong ν3 band of CF4 centered at 1283 cm−1, and two additional ones to optimally account for weak but overlapping HNO3 interferences. The analysis reveals a steady accumulation of the very long-lived CF4 above the Jungfraujoch at mean rates of (1.38 ± 0.11) × 1013 molec cm−2 yr−1 from 1989 to 1997, and (0.98 ± 0.02) × 1013 molec cm−2 yr−1 from 1998 to 2012, which correspond to linear growth rates of 1.71 ± 0.14 and 1.04 ± 0.02% yr−1 respectively referenced to 1989 and 1998. Related global CF4 anthropogenic emissions required to sustain these mean increases correspond to 15.8 ± 1.3 and 11.1 ± 0.2 Gg yr−1 over the above specified time intervals. Findings reported here are compared and discussed with respect to relevant northern mid-latitude results obtained remotely from space and balloons as well as in situ at the ground, including new gas chromatography mass spectrometry measurements performed at the Jungfraujoch since 2010. [less ▲]

Detailed reference viewed: 121 (42 ULg)