References of "Bovy, Benoît"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailRetrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations
Franco, Bruno ULg; Hendrick, François; Van Roozendael, Michel et al

in Atmospheric Measurement Techniques (2015), 8

As an ubiquitous product of the oxidation of many volatile organic compounds (VOCs), formaldehyde (HCHO) plays a key role as a short-lived and reactive intermediate in the atmospheric photo-oxidation ... [more ▼]

As an ubiquitous product of the oxidation of many volatile organic compounds (VOCs), formaldehyde (HCHO) plays a key role as a short-lived and reactive intermediate in the atmospheric photo-oxidation pathways leading to the formation of tropospheric ozone and secondary organic aerosols. In this study, HCHO profiles have been successfully retrieved from ground-based Fourier transform infrared (FTIR) solar spectra and UV-visible Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) scans recorded during the July 2010–December 2012 time period at the Jungfraujoch station (Swiss Alps, 46.5° N, 8.0° E, 3580m a.s.l.). Analysis of the retrieved products has revealed different vertical sensitivity between both remote sensing techniques. Furthermore, HCHO amounts simulated by two state-of-the-art chemical transport models (CTMs), GEOSChem and IMAGES v2, have been compared to FTIR total columns and MAX-DOAS 3.6–8 km partial columns, accounting for the respective vertical resolution of each ground-based instrument. Using the CTM outputs as the intermediate, FTIR and MAX-DOAS retrievals have shown consistent seasonal modulations of HCHO throughout the investigated period, characterized by summertime maximum and wintertime minimum. Such comparisons have also highlighted that FTIR and MAX-DOAS provide complementary products for the HCHO retrieval above the Jungfraujoch station. Finally, tests have revealed that the updated IR parameters from the HITRAN 2012 database have a cumulative effect and significantly decrease the retrieved HCHO columns with respect to the use of the HITRAN 2008 compilation. [less ▲]

Detailed reference viewed: 33 (19 ULg)
Full Text
See detailHalogenated source gases measured by FTIR at the Jungfraujoch station: updated trends and new target species
Mahieu, Emmanuel ULg; Bader, Whitney ULg; Bovy, Benoît ULg et al

in Geophysical Research Abstracts (2015, April 13), 17

In this contribution, we present decadal time series of halogenated source gases monitored at the high altitude station of the Jungfraujoch (46.5°N, 8°E, 3580 m asl) with Fourier Transform Infared (FTIR ... [more ▼]

In this contribution, we present decadal time series of halogenated source gases monitored at the high altitude station of the Jungfraujoch (46.5°N, 8°E, 3580 m asl) with Fourier Transform Infared (FTIR) spectrometers, within the framework of the Network for the Detection of Atmospheric Composition Change. Total column trends presented in previous studies for CFC-11, -12 and HCFC-22, CCl4, HCFC-142b, CF4 and SF6 will be updated using the latest available Jungfraujoch solar observations. Investigations dealing with the definition of approaches to retrieve additional halogenated source gases from FTIR spectra will also be evoked. Our trend results will be critically discussed and compared with measurements performed in the northern hemisphere by the in situ networks. [less ▲]

Detailed reference viewed: 23 (7 ULg)
Full Text
Peer Reviewed
See detailRecent increase of ethane detected in the remote atmosphere of the Northern Hemisphere
Franco, Bruno ULg; Bader, Whitney ULg; Bovy, Benoît ULg et al

Conference (2015, April 13)

Ethane (C2H6) has a large impact on tropospheric composition and air quality because of its involvement in the global VOC (volatile organic compound) – HOx – NOx chemistry responsible for generating and ... [more ▼]

Ethane (C2H6) has a large impact on tropospheric composition and air quality because of its involvement in the global VOC (volatile organic compound) – HOx – NOx chemistry responsible for generating and destroying tropospheric ozone. By acting as a major sink for tropospheric OH radicals, the abundance of C2H6 influences the atmospheric content of carbon monoxide and impacts the lifetime of methane. Moreover, it is an important source of PAN, a thermally unstable reservoir for NOx radicals. On a global scale, the main sources of C2H6 are leakage from the production, transport of natural gas loss, biofuel consumption and biomass burning, mainly located in the Northern Hemisphere. Due to its relatively long lifetime of approximately two months, C2H6 is a sensitive indicator of tropospheric pollution and transport. Using an optimized retrieval strategy (see Franco et al., 2014), we present here a 20-year long-term time series of C2H6 column abundance retrieved from ground-based Fourier Transform InfraRed (FTIR) solar spectra recorded from 1994 onwards at the high-altitude station of Jungfraujoch (Swiss Alps, 46.5° N, 3580 m a.s.l.), part of the Network for the Detection of Atmospheric Composition Change (NDACC, see http://www.ndacc.org). After a regular 1994 – 2008 decrease of the C2H6 amounts, which is very consistent with prior major studies (e.g., Aydin et al., 2011; Simpson et al., 2012) and our understanding of global C2H6 emissions, trend analysis using a bootstrap resampling tool reveals a C2H6 upturn and a statistically-significant sharp burden increase from 2009 onwards (Franco et al., 2014). We hypothesize that this observed recent increase in C2H6 could affect the whole Northern Hemisphere and may be related to the recent massive growth in the exploitation of shale gas and tight oil reservoirs. This hypothesis is supported by measurements derived from solar occultation observations performed since 2004 by the Atmospheric Chemistry Experiment – Fourier Transform Spectrometer (ACE-FTS) instrument and at other NDACC sites, namely Toronto (44° N) and Thule (77° N). Indeed, the recent rates of changes characterizing these data sets are consistent in magnitude and sign with the one derived from the FTIR measurements at Jungfraujoch. In contrast, the ethane time series form Lauder (45° S) shows a monotonic decrease over the last two decades. Investigating both the cause and impact on air quality of the C2H6 upturn should be a high priority for the atmospheric chemistry community. [less ▲]

Detailed reference viewed: 38 (9 ULg)
Full Text
Peer Reviewed
See detailRetrieval of ethane from ground-based FTIR solar spectra using improved spectroscopy: recent burden increase above Jungfraujoch
Franco, Bruno ULg; Bader, Whitney ULg; Toon, G. C. et al

in Journal of Quantitative Spectroscopy & Radiative Transfer (2015), 160(C), 36-49

An improved spectroscopy is used to implement and optimize the retrieval strategy of ethane (C2H6) from ground-based Fourier Transform Infrared (FTIR) solar spectra recorded at the high-altitude station ... [more ▼]

An improved spectroscopy is used to implement and optimize the retrieval strategy of ethane (C2H6) from ground-based Fourier Transform Infrared (FTIR) solar spectra recorded at the high-altitude station of Jungfraujoch (Swiss Alps, 46.5° N, 8.0° E, 3580m a.s.l.). The improved spectroscopic parameters include C2H6 pseudo-lines in the 2720-3100 cm-1 range and updated line parameters for methyl chloride and ozone. These improved spectroscopic parameters allow for substantial reduction of the fitting residuals as well as enhanced information content. They also contribute to limiting oscillations responsible for ungeophysical negative mixing ratio profiles. This strategy has been successfully applied to the Jungfraujoch solar spectra available from 1994 onwards. The resulting time series is compared with C2H6 total columns simulated by the state-of-the-art chemical transport model GEOS-Chem. Despite very consistent seasonal cycles between both data sets, a negative systematic bias relative to the FTIR observations suggests that C2H6 emissions are underestimated in the current inventories implemented in GEOS-Chem. Finally, C2H6 trends are derived from the FTIR time series, revealing a statistically-significant sharp increase of the C2H6 burden in the remote atmosphere above Jungfraujoch since 2009. Evaluating cause of this change in the C2H6 burden, which may be related to the recent massive growth of shale gas exploitation in North America, is of primary importance for atmospheric composition and air quality in the Northern Hemisphere. [less ▲]

Detailed reference viewed: 69 (29 ULg)
Full Text
Peer Reviewed
See detailLong-term evolution and seasonal modulation of methanol above Jungfraujoch (46.5°N, 8.0°E): Optimisation of the retrieval strategy, comparison with model and independant observations
Bader, Whitney ULg; Stavrakou, T; Muller, J-F et al

in Atmospheric Measurement Techniques (2014), 7

Methanol (CH3OH) is the second most abundant organic compound in the Earth's atmosphere after methane. In this work, we present the first long-term time series of methanol total, lower tropospheric and ... [more ▼]

Methanol (CH3OH) is the second most abundant organic compound in the Earth's atmosphere after methane. In this work, we present the first long-term time series of methanol total, lower tropospheric and upper tropospheric-lower stratospheric partial columns derived from the analysis of high resolution Fourier transform infrared solar spectra recorded at the Jungfraujoch station (46.5° N, 3580 m a.s.l.). The retrieval of methanol is very challenging due to strong absorptions of ozone in the region of the selected υ8 band of CH3OH. Two wide spectral intervals have been defined and adjusted in order to maximize the information content. Methanol does not exhibit a significant trend over the 1995–2012 time period, but a strong seasonal modulation characterized by maximum values and variability in June–July, minimum columns in winter and a peak-to-peak amplitude of 130%. In situ measurements performed at the Jungfraujoch and ACE-FTS occultations give similar results for the methanol seasonal variation. The total and lower tropospheric columns are also compared with IMAGESv2 model simulations. There is no systematic bias between the observations and IMAGESv2 but the model underestimates the peak-to-peak amplitude of the seasonal modulations. [less ▲]

Detailed reference viewed: 62 (30 ULg)
Full Text
Peer Reviewed
See detailRetrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations
Franco, Bruno ULg; Hendrick, François; Van Roozendael, Michel et al

Conference (2014, November 07)

As a ubiquitous product of the oxidation of many Volatile Organic Compounds (VOCs), formaldehyde (HCHO) plays a key role as a short-lived and reactive intermediate in the atmospheric photo-oxidation ... [more ▼]

As a ubiquitous product of the oxidation of many Volatile Organic Compounds (VOCs), formaldehyde (HCHO) plays a key role as a short-lived and reactive intermediate in the atmospheric photo-oxidation pathways leading to the formation of tropospheric ozone and secondary organic aerosols. We have successfully retrieved HCHO columns from ground-based Fourier Transform Infrared (FTIR) solar spectra and UV-Visible Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) scans recorded during the July 2010 – December 2012 time period at the Jungfraujoch station (Swiss Alps, 46.5 °N, 8.0 °E, 3580 m a.s.l.). Characterization of the retrieved products has revealed different vertical sensitivity between both remote sensing techniques. Furthermore, HCHO amounts simulated by two state-of-the-art Chemical Transport Models (CTMs), GEOS-Chem and IMAGESv2, have been compared to FTIR total columns and MAX-DOAS 3.6 – 8 km partial columns, accounting for the respective vertical resolution of each ground-based instrument. Using the CTMs outputs as intermediate, FTIR and MAX-DOAS retrievals have shown consistent seasonal modulations of HCHO throughout the investigated period, characterized by summertime maximum and wintertime minimum. Such comparisons have also highlighted that FTIR and MAX-DOAS provide complementary products for HCHO above the Jungfraujoch station. [less ▲]

Detailed reference viewed: 14 (6 ULg)
Full Text
See detailLong-term evolution and seasonal modulation of methanol above Jungfraujoch (46.5°N, 8.0°E): Optimisation of the retrieval strategy, comparison with model and independant observations
Bader, Whitney ULg; Stavrakou, J; Muller, J-F et al

Poster (2014, May)

Methanol (CH3OH) is the second most abundant organic compound in the Earth’s atmosphere after methane. In this work, we present the first long-term time series of methanol total, lower tropospheric and ... [more ▼]

Methanol (CH3OH) is the second most abundant organic compound in the Earth’s atmosphere after methane. In this work, we present the first long-term time series of methanol total, lower tropospheric and upper tropospheric-lower stratospheric partial columns derived from the analysis of high resolution Fourier transform infrared solar spectra recorded at the Jungfraujoch station (46.5°N, 3580 m a.s.l.). The retrieval of methanol is very challenging due to strong absorptions of ozone in the region of the selected 8 band of CH3OH. Two wide spectral intervals have been defined and adjusted in order to maximize the information content. Methanol does not exhibit a significant trend over the 1995-2012 time period, but a strong seasonal modulation characterized by maximum values and variability in June-July, minimum columns in winter and a peak-to-peak amplitude of 130 %. In situ measurements performed at the Jungfraujoch and ACE-FTS occultations give similar results for the methanol seasonal variation. The total and lower tropospheric columns are also compared with IMAGESv2 model simulations. There is no systematic bias between the observations and IMAGESv2 but the model underestimates the peak-to-peak amplitude of the seasonal modulations. [less ▲]

Detailed reference viewed: 24 (7 ULg)
Full Text
See detailSeeking for causes of recent methane increase: comparison between GEOS-Chem tagged simulations and FTIR column measurements above Jungfraujoch
Bader, Whitney ULg; Bovy, Benoît ULg; Wecht, K et al

Poster (2014, May)

Atmospheric CH4 reached 260% of the pre-industrial level (~700 ppb) due to increased emissions from anthropogenic sources. Globally averaged CH4 reached a new high of 1819 ± 1 ppb in 2012, an increase of ... [more ▼]

Atmospheric CH4 reached 260% of the pre-industrial level (~700 ppb) due to increased emissions from anthropogenic sources. Globally averaged CH4 reached a new high of 1819 ± 1 ppb in 2012, an increase of 6 ppb with respect to the previous year (WMO, Greenhouse gas Bulletin N.9, 2013). CH4 above Jungfraujoch increases at 0.53±0.19%/year during the late 90s to stabilize and reach a non significant trend from 2000 to 2005. Since 2006, atmospheric methane has been continuously increasing with a rate of 0.19±0.05 %/year. The attribution of this increase to any CH4 source is difficult since the current network is insufficient to characterize emissions by region and source process, emphasizing the need for source-tagged model simulations as it should provide us information on processes causing the increase of atmospheric methane since 2005/2006. [less ▲]

Detailed reference viewed: 46 (7 ULg)
Full Text
Peer Reviewed
See detailSpectrometric monitoring of atmospheric carbon tetrafluoride (CF4) above the Jungfraujoch station since 1989: evidence of continued increase but at a slowing rate
Mahieu, Emmanuel ULg; Zander, Rodolphe ULg; Toon, G. C. et al

in Atmospheric Measurement Techniques (2014), 7

The long-term evolution of the vertical column abundance of carbon tetrafluoride (CF4) above the high-altitude Jungfraujoch station (Swiss Alps, 46.5° N, 8.0° E, 3580 m a.s.l.) has been derived from the ... [more ▼]

The long-term evolution of the vertical column abundance of carbon tetrafluoride (CF4) above the high-altitude Jungfraujoch station (Swiss Alps, 46.5° N, 8.0° E, 3580 m a.s.l.) has been derived from the spectrometric analysis of Fourier transform infrared solar spectra recorded at that site between 1989 and 2012. The investigation is based on a multi-microwindow approach, two encompassing pairs of absorption lines belonging to the R-branch of the strong ν3 band of CF4 centered at 1283 cm−1, and two additional ones to optimally account for weak but overlapping HNO3 interferences. The analysis reveals a steady accumulation of the very long-lived CF4 above the Jungfraujoch at mean rates of (1.38 ± 0.11) × 1013 molec cm−2 yr−1 from 1989 to 1997, and (0.98 ± 0.02) × 1013 molec cm−2 yr−1 from 1998 to 2012, which correspond to linear growth rates of 1.71 ± 0.14 and 1.04 ± 0.02% yr−1 respectively referenced to 1989 and 1998. Related global CF4 anthropogenic emissions required to sustain these mean increases correspond to 15.8 ± 1.3 and 11.1 ± 0.2 Gg yr−1 over the above specified time intervals. Findings reported here are compared and discussed with respect to relevant northern mid-latitude results obtained remotely from space and balloons as well as in situ at the ground, including new gas chromatography mass spectrometry measurements performed at the Jungfraujoch since 2010. [less ▲]

Detailed reference viewed: 75 (23 ULg)
Full Text
See detailParallel measurements of formaldehyde (H2CO) at the Jungfraujoch station: preliminary FTIR results and first comparison with Max-DOAS data
Franco, Bruno ULg; Mahieu, Emmanuel ULg; Van Roozendael, Michel et al

Conference (2013, October 17)

In the framework of the NORS project, a retrieval strategy for formaldehyde (H2CO) is currently under development, using measurements from ground-based high-resolution FTIR solar spectra recorded at the ... [more ▼]

In the framework of the NORS project, a retrieval strategy for formaldehyde (H2CO) is currently under development, using measurements from ground-based high-resolution FTIR solar spectra recorded at the NDACC high altitude station of the Jungfraujoch (Swiss Alps, 46.5° N, 8.0° E, 3580m a.s.l.). According to the preliminary results, our FTIR retrieval strategy based on Tikhonov regularization has proven able to make an improvement in the process of fitting the H2CO feature within the 2833.070 – 2833.350 cm-1 microwindow from Jungfraujoch solar spectra, compared to a simple scaling. Furthermore, the retrieved total columns present a seasonal cycle averaged over 2005 – 2013 in agreement with preliminary results from UV-visible MAX-DOAS observations, ACE-FTS occultation measurements and simulations from the IMAGES and GEOS-CHEM models. However, FTIR H2CO abundances appear to be underestimated during summertime, with respect to the other data sets. In order to solve this issue, further experiments are planned. [less ▲]

Detailed reference viewed: 38 (6 ULg)
Full Text
See detailOverview of the geophysical data derived from long-term FTIR monitoring activities at the Jungfraujoch NDACC site (46.5ºN) and the PYGCHEM project
Mahieu, Emmanuel ULg; Bovy, Benoît ULg; Bader, Whitney ULg et al

Poster (2013, May 07)

We present an overview of the geophysical data deduced from long-term monitoring activities conducted at the Jungfraujoch station by the University of Liège. Typical results and trend investigations are ... [more ▼]

We present an overview of the geophysical data deduced from long-term monitoring activities conducted at the Jungfraujoch station by the University of Liège. Typical results and trend investigations are presented for hydrogen chloride (HCl) and carbonyl sulfide (OCS). We further display and briefly describe time series for new target gases, namely methanol (CH3OH) and HCFC-142b. We also show some preliminary results for ammonia (NH3) and peroxyacetyl nitrate (PAN). Finally, we present the PyGChem project, a Python interface to the GEOS-Chem model currently under development at ULg. [less ▲]

Detailed reference viewed: 96 (34 ULg)
Full Text
See detailFirst retrievals of HCFC-142b from ground-based high resolution FTIR solar observations: application to high altitude Jungfraujoch spectra
Mahieu, Emmanuel ULg; O'Doherty, Simon; Reimann, Stefan et al

in Geophysical Research Abstracts (2013), 15

Hydrofluorocarbons (HCFCs) are the first substitutes to the long-lived ozone depleting halocarbons, in particular the chlorofluorocarbons (CFCs). Given the complete ban of the CFCs by the Montreal ... [more ▼]

Hydrofluorocarbons (HCFCs) are the first substitutes to the long-lived ozone depleting halocarbons, in particular the chlorofluorocarbons (CFCs). Given the complete ban of the CFCs by the Montreal Protocol, its Amendments and Adjustments, HCFCs are on the rise, with current rates of increase substantially larger than at the beginning of the 21st century. HCFC-142b (CH3CClF2) is presently the second most abundant HCFC, after HCFC-22 (CHClF2). It is used in a wide range of applications, including as a blowing foam agent, in refrigeration and air-conditioning. Its concentration will soon reach 25 ppt in the northern hemisphere, with mixing ratios increasing at about 1.1 ppt/yr [Montzka et al., 2011]. The HCFC-142b lifetime is estimated at 18 years. With a global warming potential of 2310 on a 100-yr horizon, this species is also a potent greenhouse gas [Forster et al., 2007]. First space-based retrievals of HCFC-142b have been reported by Dufour et al. [2005]. 17 occultations recorded in 2004 by the Canadian ACE-FTS instrument (Atmospheric Chemistry Experiment – Fourier Transform Spectrometer, onboard SCISAT-1) were analyzed, using two microwindows (1132.5–1135.5 and 1191.5–1195.5 cm-1). In 2009, Rinsland et al. determined the HCFC-142b trend near the tropopause, from the analysis of ACE-FTS observations recorded over the 2004–2008 time period. The spectral region used in this study extended from 903 to 905.5 cm-1. In this contribution, we will present the first HCFC-142b measurements from ground-based high-resolution Fourier Transform Infrared (FTIR) solar spectra. We use observations recorded at the high altitude station of the Jungfraujoch (46.5°N, 8°E, 3580 m asl), with a Bruker 120HR instrument, in the framework of the Network for the Detection of Atmospheric Composition Change (NDACC, visit http://www.ndacc.org). The retrieval of HCFC-142b is very challenging, with simulations indicating only weak absorptions, lower than 1% for low sun spectra and current concentrations. Among the four microwindows tested, the region extending from 900 to 906 cm-1 proved to be the most appropriate, with limited interferences, in particular from water vapor. A total column time series spanning the 2004-2012 time period will be presented, analyzed and critically discussed. After conversion of our total columns to concentrations, we will compare our results with in situ measurements performed in the northern hemisphere by the AGAGE network. [less ▲]

Detailed reference viewed: 101 (24 ULg)
Full Text
See detailRetrieval of methanol (CH3OH) above the high-altitude Jungfraujoch station (46.5ºN): preliminary total column time series, long-term trend and seasonal modulation
Mahieu, Emmanuel ULg; Bader, Whitney ULg; Bovy, Benoît ULg et al

Poster (2012, June)

Methanol (CH3OH) is a key organic compound in the Earth’s troposphere, with reported concentrations of the order of a few ppbv. It is indeed the second most abundant organic atmospheric compound after ... [more ▼]

Methanol (CH3OH) is a key organic compound in the Earth’s troposphere, with reported concentrations of the order of a few ppbv. It is indeed the second most abundant organic atmospheric compound after methane. Its lifetime is estimated to a few days. Natural sources of CH3OH include plant growth, oceans, decomposition of plant matter, oxidation of methane,… They are complemented by anthropogenic (from vehicles, industry) and biomass burning emissions. Oxidation by the hydroxyl radical is the main sink, leading to the formation of carbon monoxide (CO) and formaldehyde (H2CO). The first reported retrievals of methanol used a microwindow extending from 992 to 999 cm-1 or from 1029 to 1037 cm-1. In both cases, lines of the strong ν8 band of CH3OH were adjusted, accounting for interferences by several isotopologues of ozone and by water vapor. In this contribution, we present first retrievals of CH3OH from observations recorded at the high-altitude station of the Jungfraujoch (46.5°N, 8°E, 3580 m asl), with a Bruker 120HR spectrometer, in the framework of the Network for the Detection of Atmospheric Composition Change (NDACC, visit http://www.ndacc.org). A strategy maximizing the information content and combining the 992-999 and 1029-1037 cm-1 domains has been set up and used. A preliminary long-term CH3OH total column time series derived from the Jungfraujoch observational database allows us to investigate the seasonal variation and long-term trend of this species at northern mid-latitudes. [less ▲]

Detailed reference viewed: 71 (22 ULg)
Full Text
See detailFactors of knickpoint migration on the moderately uplifted Ardennes Plateau, Western Europe
Beckers, Arnaud ULg; Bovy, Benoît ULg; Demoulin, Alain ULg

Poster (2012, April 27)

In the last two decades, much research has been devoted to the development and refinement of numerical models of river incision. In settings of prevailing bedrock channel erosion, numerous studies used ... [more ▼]

In the last two decades, much research has been devoted to the development and refinement of numerical models of river incision. In settings of prevailing bedrock channel erosion, numerous studies used field data, notably knickpoint data, to calibrate the widely acknowledged stream power model of incision and to discuss the specific impact of various variables (e.g., sediment load, channel width) not appearing explicitly in the model’s simplest form. However, most of these studies were conducted in areas of very active tectonics and high relief, thus displaying an exacerbated geomorphic response to the tectonic signal. Here, we analyze the traces left in the drainage network 0.7 My after the NE Ardennes region (western Europe) underwent a moderate 100-150 m uplift. We identify a set of knickpoints that have travelled far upstream in the Ourthe catchment. Because time becomes a more sensitive variable than distance near the headwaters, we fit the stream power model to the data by minimizing time residuals (i.e., the differences between 0.7 My and the modelled times for the knickpoints to reach their actual location) rather than distance residuals. Our best fit of the stream power model parameters yields m/n = 0.75 and K = 4.63 10-8 m-0.5y-1. We suggest that the discrepancy with the m/n value of 0.5 obtained from field and long profile data of the currently graded downstream part of the catchment’s streams points to a narrowing of the bedrock channel at the passage of a knickpoint. Then, the time residuals of the model fit are regressed against quantitative expressions of bedrock resistance to erosion and junction crossing, showing that both variables significantly affect knickpoint migration. In particular, most of the small tributaries with highly delayed knickpoints display all features characteristic of hanging valleys. However, not all such small streams have developed hanging valleys, and further research is needed to unravel how other controls, e.g., amount and size of the tributary bed load, are determining for the creation of such valleys. [less ▲]

Detailed reference viewed: 51 (12 ULg)
Full Text
Peer Reviewed
See detailOn different types of adjustment usable to calculate the parameters of the stream power law
Demoulin, Alain ULg; Beckers, Arnaud ULg; Bovy, Benoît ULg

in Geomorphology (2012), 138(1), 203-208

Model parameterization through adjustment to field data is a crucial step in the modeling and the understanding of the drainage network response to tectonic or climatic perturbations. Using as a test case ... [more ▼]

Model parameterization through adjustment to field data is a crucial step in the modeling and the understanding of the drainage network response to tectonic or climatic perturbations. Using as a test case a data set of 18 knickpoints that materialize the migration of a 0.7-Ma-old erosion wave in the Ourthe catchment of northern Ardennes (western Europe), we explore the impact of various data fitting on the calibration of the stream power model of river incision, from which a simple knickpoint celerity equation is derived. Our results show that statistical least squares adjustments (or misfit functions) based either on the streamwise distances between observed and modeled knickpoint positions at time t or on differences between observed and modeled time at the actual knickpoint locations yield significantly different values for the m and K parameters of the model. As there is no physical reason to prefer one of these approaches, an intermediate least-rectangles adjustment might at first glance appear as the best compromise. However, the statistics of the analysis of 200 sets of synthetic knickpoints generated in the Ourthe catchment indicate that the timebased adjustment is the most capable of getting close to the true parameter values. Moreover, this fitting method leads in all cases to an m value lower than that obtained from the classical distance adjustment (for example, 0.75 against 0.86 for the real case of the Ourthe catchment), corresponding to an increase in the non-linear character of the dependence of knickpoint celerity on discharge [less ▲]

Detailed reference viewed: 128 (13 ULg)
Full Text
See detailModelling the migration of a mid-Pleistocene erosion wave in the Ardennes (western Europe) drainage network: approach and first implications
Beckers, Arnaud ULg; Bovy, Benoît ULg; Demoulin, Alain ULg

Poster (2011, April)

Model parameterization through adjustment to field data is a crucial step in the modelling and the understanding of the drainage network response to tectonic or climatic perturbations. Using a data set of ... [more ▼]

Model parameterization through adjustment to field data is a crucial step in the modelling and the understanding of the drainage network response to tectonic or climatic perturbations. Using a data set of 18 knickpoints that materialize the migration of a 0.7-Ma-old erosion wave in the Ourthe catchment of northern Ardennes (western Europe) as a test case, we explore the impact of various data fitting on the calibration of the detachment-limited stream power model of river incision, from which a simple knickpoint celerity equation is derived. Our results show that statistical least squares adjustments (or misfit functions) based either on the stream-wise distances between observed and modelled knickpoint positions at time t = 0.7 Ma or on differences between observed (0.7 Ma) and modelled time at the actual knickpoint locations yield significantly different values for the m (more exactly, m/n) and K parameters of the model. As there is no physical reason to prefer one or the other approach, we suggest that an intermediate least rectangles adjustment might be the best compromise. In the Ourthe case, this leads to a m/n value lower than that obtained from the classical distance adjustment (0.79 against 0.86), leading to an increase in the non linear character of the dependence of knickpoint celerity on discharge. If we now recall that m/n = c(1-b) (Whipple & Tucker, 1999, JGR 104B: 17661-17674), where c and b are the exponents of the power law relations respectively linking discharge to drainage area and channel width to discharge, we can compare the calculated m/n value with that derived from field measurements of channel width, discharge and drainage area in the presently graded sections of the rivers. Such data taken from Petit et al. (2005, BSGLg 46: 37-50) allow us to derive m/n = 0.48 at equilibrium. As c may be considered constant, the higher m=n value obtained from the knickpoint retreat modelling must be ascribed to a lower b, i.e., to a channel narrowing associated with the transient phase of knickpoint migration. [less ▲]

Detailed reference viewed: 84 (23 ULg)