References of "Borges, Alberto"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailEcoNum, a research unit devoted to marine environment monitoring
Richir, Jonathan ULg; Batigny, Antoine; Georges, Nadège et al

Conference (2016, October 27)

The monitoring of coastal environments remains a research domain of great interest and concern. Coastal ecosystems are threatened by natural and human-induced stressors and are, as transitional ... [more ▼]

The monitoring of coastal environments remains a research domain of great interest and concern. Coastal ecosystems are threatened by natural and human-induced stressors and are, as transitional environments, particularly sensitive to disturbances. EcoNum first research thematic revolves around hermatypic corals, calcifying organisms, and their adaptation potentials to environmental changes including by using original and patented chemostats. The studied organisms are grown and maintained in artificial mesocosms that simulate environmental conditions of a natural system. This infrastructure allows to perform long-term experiments, giving time to organisms to adapt to the tested conditions (e.g., increased temperature or lowered pH). Longer-term studies have demonstrated that many organisms are more resistant to environmental stressors than previously observed on the short-term. EcoNum also studies coastal plankton abundance and diversity. Plankton is particularly sensitive to physicochemical changes of water bodies. The classification and the enumeration of planktonic organisms require specialized tools in order to analyse time series of multiple samples. EcoNum has developed a software for the semi-automatic classification of planktonic organisms called Zoo/PhytoImage. This software has been used to study a 10-year time series of coastal Mediterranean zooplankton samples. The concomitant analysis of environmental parameters registered at high frequency with specific statistical tools such as the R package pastecs allows to understand the processes governing the changes observed in plankton assemblages. The use and the development of statistical tools in R (e.g., Zoo/Phytoimage, pastecs) is a priority of EcoNum to favour open access knowledge and reproductive sciences. EcoNum research topics also focus on coastal ecotoxicology. Chemicals, including trace elements, remain contaminants of concern, mainly in coastal environments that are the final sink of inland pollution sources. The chemical integrity of coastal ecosystems thus has to be accurately monitored. The partitioning of chemicals between their dissolved, particulate and sedimentary phases does not provide information on their bioavailability. EcoNum thus monitors coastal waters using bioindicator species such as seagrasses, mussels or sand worms. A global map of the contamination of the Mediterranean by trace elements has been drawn using seagrasses has bioindicator species. EcoNum also studies trace element ecology and toxicology. For instance, it has demonstrated the toxicity of copper on the coral Seriatopora hystrix and it's symbiont's photosynthetic processes, or its bioaccumulation and basipetal translocation towards rhizomes in the seagrass Posidonia oceanica as reserve nutrient for subsequent leaf growth. Finally, coastal vegetated systems are potential carbon thinks (or sources) in the global carbon cycle. Therefore, EcoNum studies the primary productivity of seagrass meadows, from the individual to the community, with measuring techniques as diverse as PAM-fluorometry or biomass production determination. To conclude, EcoNum is a research unit devoted to marine environment monitoring. It develops research thematics on major coastal communities such as coral reefs, seagrass beds or plankton assemblages and studies their natural dynamics and the effects of stressors on their global functioning. [less ▲]

Detailed reference viewed: 17 (2 ULg)
Full Text
Peer Reviewed
See detailDiversity, dynamics and trophic ecology of animal communities associated to Posidonia oceanica (L.) Delile macrophytodetrital accumulation: synthesis of a ten year study
Lepoint, Gilles ULg; Borges, Alberto ULg; Champenois, Willy ULg et al

Poster (2016, October 17)

In the Mediterranean, Neptune grass Posidonia oceanica, produces a huge quantity of detrital biomass. These macrophytodetritus may accumulate in shallow waters, forming litter accumulations colonised by ... [more ▼]

In the Mediterranean, Neptune grass Posidonia oceanica, produces a huge quantity of detrital biomass. These macrophytodetritus may accumulate in shallow waters, forming litter accumulations colonised by abundant, yet understudied, animal communities. These accumulations are especially foraged by juvenile and adult fishes. Here, we aim to synthesize results obtained over the last ten years regarding diversity, dynamics and trophic ecology of associated meio- and macrofauna. Accumulations are found throughout the year but important seasonal and short-term variability in composition, quantity and physico-chemical parameters inside the accumulation is observed. Accumulations are dominated by respiration (litter degradation), however, primary production occurs at exposed surfaces (epiphytic production). Meio- and macrofauna have distinct traits in comparison to adjacent habitats (seagrass meadows or epilithic algae communities). A physico-chemical gradient occurs inside accumulations which partially defines assemblage composition and distribution. Meiofauna, in particular harpacticoid copepods, is diverse, abundant and composed of species from seagrass meadows, water column and sediment. In contrast, macrofaunal assemblages are simplified compared to the ones occurring in the seagrass meadows and are dominated by amphipods. Litter accumulations display a lower macrofaunal diversity than do seagrass meadows, but a higher abundance and animal biomass. Meio- and macrofauna show a high trophic diversity, dominated by ingestion and assimilation of epiphytes (macroalgae and, probably, detrivorous microbiota). Moreover, direct or indirect assimilation of carbon originating from seagrass detritus is demonstrated for many species. Although diverse trophic niches were observed, the assemblage showed a simplified trophic web structure compared to the seagrass meadows. Detritivorous organisms dominate this assemblage and are more abundant in the litter than in the living meadows. Consequently, according to its abundance and the fact it consumes directly and indirectly seagrass material, fauna associated to litter accumulation may play a significant role in the degradation and transfer to higher trophic level of detrital seagrass carbon. [less ▲]

Detailed reference viewed: 26 (2 ULg)
Full Text
Peer Reviewed
See detailShift in the chemical composition of dissolved organic matter in the Congo River network
Lambert, Thibault ULg; Bouillon, S.; Darchambeau, François ULg et al

in Biogeosciences (2016), 13(18), 5405-5420

The processing of terrestrially derived dissolved organic matter (DOM) during downstream transport in fluvial networks is poorly understood. Here, we report a dataset of dissolved organic carbon (DOC ... [more ▼]

The processing of terrestrially derived dissolved organic matter (DOM) during downstream transport in fluvial networks is poorly understood. Here, we report a dataset of dissolved organic carbon (DOC) concentrations and DOM composition (stable carbon isotope ratios, absorption and fluorescence properties) acquired along a 1700 km transect in the middle reach of the Congo River Basin. Samples were collected in the mainstem and its tributaries during high water (HW) and falling water (FW) periods. DOC concentrations and DOM composition along the mainstem were found to differ between the two periods, because of a reduced lateral mixing between the central water masses of the Congo River and DOM-rich waters from tributaries and also likely because of a greater photodegradation during FW as water residence time (WRT) increased. Although the Cuvette Centrale wetland (one of the world’s largest flooded forest) continuously releases highly aromatic DOM in streams and rivers of the Congo Basin, the downstream transport of DOM was found to result in an along stream gradient from aromatic to aliphatic compounds. The characterization of DOM through parallel factor analysis (PARAFAC) suggests that this transition results from (1) the losses of aromatic compounds by photodegradation and (2) the production of aliphatic compounds by biological reworking of terrestrial DOM. Finally, this study highlights the critical importance of the river-floodplain connectivity in tropical rivers in controlling DOM biogeochemistry at large spatial scale and suggests that the degree of DOM processing during downstream transport is a function of landscape characteristics and WRT [less ▲]

Detailed reference viewed: 20 (3 ULg)
Full Text
Peer Reviewed
See detailOccurrence of greenhouse gases (CO2, N2O and CH4) in groundwater of the Walloon Region (Belgium)
Jurado Elices, Anna ULg; Borges, Alberto ULg; Hakoun, Vivien et al

Conference (2016, September 27)

Carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) can be indirectly transferred to the atmosphere through groundwater discharge into surface water bodies such as rivers. However, these emissions ... [more ▼]

Carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) can be indirectly transferred to the atmosphere through groundwater discharge into surface water bodies such as rivers. However, these emissions are poorly evaluated and highly uncertain. The aim of this work is identify the hydrogeological contexts (alluvial, sandstone, chalk and limestone aquifers) and in situ conditions which are most conducive to the generation and occurrence of GHGs in groundwater at a regional scale. To this end, CO2, CH4 and N2O concentrations as well as major and minor elements were monitored (n=37 samples) in two field campaigns (09/2014 and 03/2015) in 15 groundwater bodies of the Walloon Region (Belgium). This preliminary work, which was presented in the 42st IAH conference (Rome, Italy), shown that GHG concentrations range from 5,160 to 47,544 ppm from the partial pressure of CO2 and from 0 to 1,064 nmol/L and 1 to 5,637 nmol/L for CH4 and N2O respectively. Overall, groundwater was supersaturated in GHGs with respect to atmospheric equilibrium, suggesting that groundwater contribute to the atmospheric GHGs budget. A third sampling campaign is carried out in 2016 including around 60 new groundwater samples. The combination of the results of the three campaigns allows: (1) reducing the uncertainties related to indirect emissions of GHG through groundwater-surface water interaction and (2) contributing to a better understanding of the occurrence of GHGs in aquifers. New results will be presented and discussed in detail in the presentation. [less ▲]

Detailed reference viewed: 33 (2 ULg)
Full Text
Peer Reviewed
See detailMassive marine methane emissions from near-shore shallow coastal areas
Borges, Alberto ULg; Champenois, Willy ULg; Gypens, N et al

in Scientific Reports (2016), 6

Methane is the second most important greenhouse gas contributing to climate warming. The open ocean is a minor source of methane to the atmosphere. We report intense methane emissions from the near-shore ... [more ▼]

Methane is the second most important greenhouse gas contributing to climate warming. The open ocean is a minor source of methane to the atmosphere. We report intense methane emissions from the near-shore southern region of the North Sea characterized by the presence of extensive areas with gassy sediments. The average flux intensities (~130 μmol m−2 d−1) are one order of magnitude higher than values characteristic of continental shelves (~30 μmol m−2 d−1) and three orders of magnitude higher than values characteristic of the open ocean (~0.4 μmol m−2 d−1). The high methane concentrations (up to 1,128 nmol L−1) that sustain these fluxes are related to the shallow and well-mixed water column that allows an efficient transfer of methane from the seafloor to surface waters. This differs from deeper and stratified seep areas where there is a large decrease of methane between bottom and surface by microbial oxidation or physical transport. Shallow well-mixed continental shelves represent about 33% of the total continental shelf area, so that marine coastal methane emissions are probably under-estimated. Near-shore and shallow seep areas are hot spots of methane emission, and our data also suggest that emissions could increase in response to warming of surface waters. [less ▲]

Detailed reference viewed: 109 (10 ULg)
Full Text
Peer Reviewed
See detailDistributions and Sea-to-air Fluxes of Nitrous Oxide in the South China Sea and the West Philippines Sea
Tseng, Hsiao-Chun; Chen, Chen-Tung Arthur; Borges, Alberto ULg et al

in Deep-Sea Research Part I, Oceanographic Research Papers (2016), 115

Abstract Approximately 600 water samples from the South China Sea (SCS) and 250 water samples from the West Philippines Sea (WPS) were collected during seven cruises from August 2003 to July 2007 to ... [more ▼]

Abstract Approximately 600 water samples from the South China Sea (SCS) and 250 water samples from the West Philippines Sea (WPS) were collected during seven cruises from August 2003 to July 2007 to determine nitrous oxide (N2O) distributions between the surface and a maximum depth of 4250 m. In the SCS, the average surface \{N2O\} concentration exceeded the atmospheric equilibrium concentration (on average 132 ± 23%); however in the WPS, the surface \{N2O\} concentration was lower than the atmospheric equilibrium concentration (on average 90 ± 22%). The \{N2O\} concentration reached a maximum (~23 nmol L−1) in the \{WPS\} at 800–1000 m, and (~28 nmol L−1) at a shallower depth of around 600–800 m in the SCS, owing to vertical mixing and intensive upwelling in the SCS. In the SCS, the surface \{N2O\} concentration was 7.59 ± 1.32 nmol L−1 and the calculated sea-to-air flux was 5.5 ± 3.9 μmol m−2 d−1. The surface \{N2O\} concentration in the WPS, 5.19 ± 1.26 nmol L−1, was lower than that in the SCS. [less ▲]

Detailed reference viewed: 23 (1 ULg)
Full Text
Peer Reviewed
See detailAlong-stream transport and transformation of dissolved organic matter in a large tropical river
Lambert, Thibault ULg; Teodoru, C. R.; Nyoni, F. C. et al

in Biogeosciences (2016), 13(9), 2727--2741

Large rivers transport considerable amounts of terrestrial dissolved organic matter (DOM) to the ocean. However, downstream gradients and temporal variability in DOM fluxes and characteristics are poorly ... [more ▼]

Large rivers transport considerable amounts of terrestrial dissolved organic matter (DOM) to the ocean. However, downstream gradients and temporal variability in DOM fluxes and characteristics are poorly studied at the scale of large river basins, especially in tropical areas. Here, we report longitudinal patterns in DOM content and composition based on absorbance and fluorescence measurements along the Zambezi River and its main tributary, the Kafue River, during two hydrological seasons. During high-flow periods, a greater proportion of aromatic and humic DOM was mobilized along rivers due to the hydrological connectivity with wetlands, while low-flow periods were characterized by lower DOM content of less aromaticity resulting from loss of connectivity with wetlands, more efficient degradation of terrestrial DOM and enhanced autochthonous productivity. Changes in water residence time due to contrasting water discharge were found to modulate the fate of DOM along the river continuum. Thus, high water discharge promotes the transport of terrestrial DOM downstream relative to its degradation, while low water discharge enhances the degradation of DOM during its transport. The longitudinal evolution of DOM was also strongly impacted by a hydrological buffering effect in large reservoirs in which the seasonal variability of DOM fluxes and composition was strongly reduced. [less ▲]

Detailed reference viewed: 15 (5 ULg)
Full Text
Peer Reviewed
See detailChemoautotrophy and anoxygenic photosynthesis within the water column of a large meromictic tropical lake (Lake Kivu, East Africa)
Morana, Cédric; Roland, Fleur ULg; Crowe, Sean A. et al

in Limnology and Oceanography (2016)

We quantified chemoautotrophic and anoxygenic photosynthetic microbial production in the water column of Lake Kivu, a permanently stratified tropical lake situated amidst volcanic activity, and aimed to ... [more ▼]

We quantified chemoautotrophic and anoxygenic photosynthetic microbial production in the water column of Lake Kivu, a permanently stratified tropical lake situated amidst volcanic activity, and aimed to identify the microorganisms involved in these processes through the analysis of their phospholipid fatty acid (PLFA) content and stable isotope (13C) labelling of PLFA in a set of incubation experiments. Data demonstrate the existence of a biogeochemically active chemoautotrophic bacterial community in the redoxcline of Lake Kivu (50–70 m). PLFA data indicate that the bacterial communities are structured vertically in the water column, with a large dissimilarity between the oxic and anoxic waters. Maximum volumetric dark CO2 fixation rates measured in Lake Kivu were in the same range as values reported from H2S-rich marine redoxclines, such as the Black and Baltic Seas, and the Cariaco Basin. Similarly, maximal chemoautotrophic activities in Lake Kivu were observed in sulfidic waters, just below the oxycline. Anoxygenic photosynthetic production was never observed in the main basin of Lake Kivu. However, anoxygenic phototrophs largely dominated CO2 fixation in the illuminated redoxcline of Kabuno Bay, a shallower ferruginous sub-basin. Overall, this study supports the idea that chemoautotrophs and/or anoxygenic photoautotrophs might play an important role in the flow of carbon and energy in permanently stratified tropical ecosystems. In Lake Kivu, these processes significantly contribute to organic matter biosynthesis and exert an indirect control on oxygenic photoautotrophs by shortcircuiting the vertical transport of nutrients to the illuminated and oxygenated surface waters. [less ▲]

Detailed reference viewed: 20 (3 ULg)
Full Text
Peer Reviewed
See detailNitrous oxide and methane seasonal variability in the epilimnion of a large tropical meromictic lake (Lake Kivu, East-Africa)
Roland, Fleur ULg; Darchambeau, François ULg; Morana, Cédric et al

in Aquatic Sciences (2016)

We report a data-set of monthly vertical profiles obtained from January 2012 to October 2013, from the surface to 70 m depth of nitrous oxide (N2O) and dissolved methane (CH4) in Lake Kivu, a large and ... [more ▼]

We report a data-set of monthly vertical profiles obtained from January 2012 to October 2013, from the surface to 70 m depth of nitrous oxide (N2O) and dissolved methane (CH4) in Lake Kivu, a large and deep meromictic tropical lake (East Africa). Vertical variations of N2O were modest, with ranges of 6--9 and 0--16 nmol L−1 in surface and bottom waters, respectively, and occasionally peaks of N2O (up to 58 nmol L−1) were observed at the oxic-anoxic interface. On the contrary, steep vertical gradients of CH4 were observed with values changing several orders of magnitude from surface (19--103 nmol L−1) to 70 m (113,000--520,000 nmol L−1). Seasonal variations of CH4 were caused by annual cycles of mixing and stratification, during the dry and rainy seasons, respectively. This mixing allowed the establishment of a thick oxic layer (maximum 65 m deep), leading to decreased CH4 concentrations (minimum of 8 nmol L−1), presumably due to bacterial CH4 oxidation. During the stratification period, the oxic mixed layer was thinner (minimum 25 m deep), and an increase of CH4 concentrations in surface waters was observed (maximum of 103 nmol L−1), probably due to a lower integrated CH4 oxidation on the water column. Lake Kivu seasonally alternated between a source and a sink for atmospheric N2O, but on an annual scale was a small source of N2O to the atmosphere (on average 0.43 \textmumol m−2 day−1), while it was a small source of CH4 to the atmosphere throughout the year (on average 86 \textmumol m−2 day−1). Vertical and seasonal variations of N2O are discussed in terms of nitrification and denitrification, although from the present data-set it is not possible to unambiguously identify the main drivers of N2O production. [less ▲]

Detailed reference viewed: 13 (3 ULg)
Full Text
Peer Reviewed
See detailFirst mesocosm experiments to study the impacts of ocean acidification on plankton communities in the NW Mediterranean Sea (MedSeA project)
Gazeau, F; Sallon, A; Maugendre, L et al

in Estuarine Coastal & Shelf Science (2016)

There is a growing international interest in studying the effects of ocean acidification on plankton communities that play a major role in the global carbon cycle and in the consumption of atmospheric CO2 ... [more ▼]

There is a growing international interest in studying the effects of ocean acidification on plankton communities that play a major role in the global carbon cycle and in the consumption of atmospheric CO2 via the so-called biological pump. Recently, several mesocosm experiments reported on the effect of ocean acidification on marine plankton communities, although the majority were performed in eutro- phic conditions or following nutrient addition. The objective of the present study was to perform two mesocosm experiments in the oligo- to meso-trophic Northwestern Mediterranean Sea during two seasons with contrasting environmental conditions: in summer 2012 in the Bay of Calvi (Corsica, France) and in winter 2013 in the Bay of Villefranche (France). This paper describes the objectives of these ex- periments, the study sites, the experimental set-up and the environmental and experimental conditions during the two experiments. The 20-day experiment in the Bay of Calvi was undoubtedly representative of summer conditions in the Northwestern Mediterranean Sea with low nutrient and chlorophyll a concentrations, warm waters and high surface solar irradiance. In contrast, the winter experiment, which was reduced to 12 days because of bad weather conditions, failed to reproduce the mesotrophic con- ditions typical of the wintertime in this area. Indeed, a rapid increase in phytoplankton biomass during the acidification phase led to a strong decrease in nitrate concentrations and an unrealistic N and P co- limitation at this period of the year. An overview of the 11 other papers related to this study and pub- lished in this special issue is provided. [less ▲]

Detailed reference viewed: 66 (6 ULg)
Full Text
Peer Reviewed
See detailThe internal consistency of the North Sea carbonate system
Salt, Lesley A.; Thomas, Helmuth; Bozec, Yann et al

in Journal of Marine Systems (2016), 157

Abstract In 2002 (February) and 2005 (August), the full suite of carbonate system parameters (total alkalinity (AT), dissolved inorganic carbon (DIC), pH, and partial pressure of \{CO2\} (pCO2) were ... [more ▼]

Abstract In 2002 (February) and 2005 (August), the full suite of carbonate system parameters (total alkalinity (AT), dissolved inorganic carbon (DIC), pH, and partial pressure of \{CO2\} (pCO2) were measured on two re-occupations of the entire North Sea basin, with three parameters (AT, DIC, pCO2) measured on four additional re-occupations, covering all four seasons, allowing an assessment of the internal consistency of the carbonate system. For most of the year, there is a similar level of internal consistency, with \{AT\} being calculated to within ± 6 μmol kg− 1 using \{DIC\} and pH, \{DIC\} to ± 6 μmol kg− 1 using \{AT\} and pH, pH to ± 0.008 using \{AT\} and pCO2, and pCO2 to ± 8 μatm using \{DIC\} and pH, with the dissociation constants of Millero et al. (2006). In spring, however, we observe a significant decline in the ability to accurately calculate the carbonate system. Lower consistency is observed with an increasing fraction of Baltic Sea water, caused by the high contribution of organic alkalinity in this water mass, not accounted for in the carbonate system calculations. Attempts to improve the internal consistency by accounting for the unconventional salinity–borate relationships in freshwater and the Baltic Sea, and through application of the new North Atlantic salinity–boron relationship (Lee et al., 2010), resulted in no significant difference in the internal consistency. [less ▲]

Detailed reference viewed: 38 (1 ULg)
Full Text
Peer Reviewed
See detailSTAtion of Reference and rEsearch on Change of local and global Anthropogenic Pressures on Mediterranean Ecosystems Drifts: The STARECAPMED project
Richir, Jonathan ULg; Abadie, Arnaud ULg; Binard, Marc ULg et al

Conference (2015, November 08)

The Marine and Oceanographic Research Station STARESO in the Calvi Bay, Corsica (France), is a unique tool in a preserved natural site that includes all the characteristic ecosystems of the Mediterranean ... [more ▼]

The Marine and Oceanographic Research Station STARESO in the Calvi Bay, Corsica (France), is a unique tool in a preserved natural site that includes all the characteristic ecosystems of the Mediterranean littoral. The station, established in 1970, has archived environmental data for decades. The STARECAPMED project, multidisciplinary, articulates itself around these two main features. Its objective is to understand how human activities can interact with the fundamental processes that govern the functioning of the different coastal ecosystems of a Mediterranean bay. The understanding of these interactions involves: (i) the identification of the anthropogenic pressures; (ii) the quantification of their impacts on the ecosystems; (iii) the prioritization of these impacts. STARECAPMED also aims to confirm the relevance of the use of the Calvi Bay as a reference in the study of local and global pressures and the changes they may cause on the structure and the functioning of Mediterranean coastal ecosytems. [less ▲]

Detailed reference viewed: 102 (21 ULg)
Full Text
See detailNeodymium isotope constraints on past hydrological variability in the Congo Basin
Bayon, G; Schefuss, E; Dupont, L et al

Conference (2015, October 26)

Detailed reference viewed: 28 (1 ULg)
Full Text
Peer Reviewed
See detailDivergent biophysical controls of aquatic CO2 and CH4 in the World’s two largest rivers
Borges, Alberto ULg; Abril, G; Darchambeau, François ULg et al

in Scientific Reports (2015), 5

Carbon emissions to the atmosphere from inland waters are globally significant and mainly occur at tropical latitudes. However, processes controlling the intensity of CO2 and CH4 emissions from tropical ... [more ▼]

Carbon emissions to the atmosphere from inland waters are globally significant and mainly occur at tropical latitudes. However, processes controlling the intensity of CO2 and CH4 emissions from tropical inland waters remain poorly understood. Here, we report a data-set of concurrent measurements of the partial pressure of CO2 (pCO2) and dissolved CH4 concentrations in the Amazon (n = 136) and the Congo (n = 280) Rivers. The pCO2 values in the Amazon mainstem were significantly higher than in the Congo, contrasting with CH4 concentrations that were higher in the Congo than in the Amazon. Large-scale patterns in pCO2 across different lowland tropical basins can be apprehended with a relatively simple statistical model related to the extent of wetlands within the basin, showing that, in addition to non-flooded vegetation, wetlands also contribute to CO2 in river channels. On the other hand, dynamics of dissolved CH4 in river channels are less straightforward to predict, and are related to the way hydrology modulates the connectivity between wetlands and river channels. [less ▲]

Detailed reference viewed: 73 (9 ULg)
Full Text
See detailMethane distributions and sea-to-air fluxes in the South China Sea and the West Philippines Sea
Tseng, HC; Chen, C-T A; Borges, Alberto ULg et al

Conference (2015, September 14)

Detailed reference viewed: 13 (1 ULg)
Full Text
Peer Reviewed
See detailPelagic photoferrotrophy and iron cycling in a modern ferruginous basin
Llirós, Marc; García–Armisen, Tamara; Darchambeau, François ULg et al

in Scientific Reports (2015), 5

Iron-rich (ferruginous) ocean chemistry prevailed throughout most of Earth’s early history. Before the evolution and proliferation of oxygenic photosynthesis, biological production in the ferruginous ... [more ▼]

Iron-rich (ferruginous) ocean chemistry prevailed throughout most of Earth’s early history. Before the evolution and proliferation of oxygenic photosynthesis, biological production in the ferruginous oceans was likely driven by photoferrotrophic bacteria that oxidize ferrous iron {Fe(II)} to harness energy from sunlight, and fix inorganic carbon into biomass. Photoferrotrophs may thus have fuelled Earth’s early biosphere providing energy to drive microbial growth and evolution over billions of years. Yet, photoferrotrophic activity has remained largely elusive on the modern Earth, leaving models for early biological production untested and imperative ecological context for the evolution of life missing. Here, we show that an active community of pelagic photoferrotrophs comprises up to 30% of the total microbial community in illuminated ferruginous waters of Kabuno Bay (KB), East Africa (DR Congo). These photoferrotrophs produce oxidized iron {Fe(III)} and biomass, and support a diverse pelagic microbial community including heterotrophic Fe(III)-reducers, sulfate reducers, fermenters and methanogens. At modest light levels, rates of photoferrotrophy in KB exceed those predicted for early Earth primary production, and are sufficient to generate Earth’s largest sedimentary iron ore deposits. Fe cycling, however, is efficient, and complex microbial community interactions likely regulate Fe(III) and organic matter export from the photic zone. [less ▲]

Detailed reference viewed: 72 (0 ULg)
Full Text
See detailRegional occurence of greenhouses gases in groundwater: Initial results in shallow Belgian aquifers.
Hakoun, Vivien ULg; Gesels, Julie ULg; Tseng, Jean Hsiao-Chun et al

Poster (2015, September)

Currently, the lack of robust, context-distributed subsurface greenhouses gases (GHG) concentrations data is a key bottleneck to reduce the uncertainty range of GHG groundwater input to continental ... [more ▼]

Currently, the lack of robust, context-distributed subsurface greenhouses gases (GHG) concentrations data is a key bottleneck to reduce the uncertainty range of GHG groundwater input to continental surface water bodies such as rivers or lakes estimates. Carbon dioxyde (CO2), methane (CH4) and nitrous oxyde (N2O) are likely to be indirectly transferred to the atmosphere through groundwater discharge into continental surface water bodies. We aim to extend regional-scale estimates of indirect GHG emissions by screening, in numerous hydrogeological (such as alluvial, sandstone, chalk and limestone aquifers) and land use contexts (such as industrial and agricultural), the occurence of these gases. Here, we report and discuss CO2, CH4 and N2O concentrations from an initial survey conducted over selected sites (n= 40) within shallow (0-100 m depth) aquifers in Wallonia (Belgium) for the first time. The preliminary results obtained in this study show that the range of GHG concentrations varies between 5160 and 47544 ppm, 0 and 1064 nmol.L-1, as well as 1 and 5637 nmol.L-1 for the partial pressure of CO2, CH4 and N2O respectively. This new and unique regional dataset provides a first step in developping a refined understanding of favorable contexts for GHG occurence in groundwater which may be used to reduce the uncertainties related to indirect emissions of GHG through groundwater-surface water transfers. [less ▲]

Detailed reference viewed: 120 (17 ULg)
Full Text
Peer Reviewed
See detailRiver geochemistry, chemical weathering, and atmospheric CO2 consumption rates in the Virunga Volcanic Province (East Africa)
Balagizi, Charles M.; Darchambeau, François ULg; Bouillon, Steven et al

in Geochemistry, Geophysics, Geosystems (2015), 16

Detailed reference viewed: 41 (1 ULg)
Full Text
See detailContribution of cyanobacteria to the building of travertines in a calcareous stream
Wilmotte, Annick ULg; Golubic, Stjepko; Kleinteich, Julia et al

Poster (2015, August 03)

The ambient temperature travertine deposits of the calcareous Hoyoux River (Modave, Belgium) and several tributaries are organized and promoted by the filamentous cyanobacterium identified by its ... [more ▼]

The ambient temperature travertine deposits of the calcareous Hoyoux River (Modave, Belgium) and several tributaries are organized and promoted by the filamentous cyanobacterium identified by its morphotype and ecological properties as Phormidium cf. incrustatum. A combination of techniques was used to study this biotope: physico-chemical parameters and CO2 measurements, Scanning and Transmission Electron Microscopy, RAMAN microspectroscopy. A molecular diversity study with pyrosequencing of the cyanobacterial 16S rRNA is in progress. A potential candidate was isolated in culture. [less ▲]

Detailed reference viewed: 71 (3 ULg)