References of "Bonizzi, Giuseppina"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailNf-Kappab Activation in Response to Toxical and Therapeutical Agents: Role in Inflammation and Cancer Treatment
Bours, Vincent ULg; Bonizzi, Giuseppina; Bentires-Alj, Mohamed et al

in Toxicology (2000), 153(1-3), 27-38

The NF-kappaB transcription factor is ubiquitously expressed and controls the expression of a large number of genes. Experimental data clearly indicate that NF-kappaB is a major regulator of the ... [more ▼]

The NF-kappaB transcription factor is ubiquitously expressed and controls the expression of a large number of genes. Experimental data clearly indicate that NF-kappaB is a major regulator of the inflammatory reaction by controlling the expression of pro-inflammatory molecules in response to cytokines, oxidative stress and infectious agents. We demonstrated that NF-kappaB activation by IL-1beta follows three distinct cell-specific pathways. Moreover, our studies indicated that in one model of inflammatory diseases, horse recurrent airway obstruction (RAO), the extent of NF-kappaB basal activity correlates with pulmonary dysfunction. Another role of NF-kappaB activity protects cancer cells against apoptosis and could participate in the resistance to cancer treatment. However, we did not observe any increased cytotoxicity after treatment with anticancer drugs or TNF-alpha of cells expressing a NF-kappaB inhibitor. Therefore, we can conclude that the inhibition of apoptosis by NF-kappaB is likely to be cell type and stimulus-dependent. Further studies are required to determine whether NF-kappaB could be a target for anticancer treatments. [less ▲]

Detailed reference viewed: 43 (6 ULg)
Full Text
Peer Reviewed
See detailMechanisms of Persistent Nf-Kappa B Activity in the Bronchi of an Animal Model of Asthma
Bureau, Fabrice ULg; Delhalle, Sylvie; Bonizzi, Giuseppina et al

in Journal of Immunology (2000), 165(10), 5822-5830

In most cells trans-activating NF-kappaB induces many inflammatory proteins as well as its own inhibitor, IkappaB-alpha, thus assuring a transient response upon stimulation. However, NF-kappaB-dependent ... [more ▼]

In most cells trans-activating NF-kappaB induces many inflammatory proteins as well as its own inhibitor, IkappaB-alpha, thus assuring a transient response upon stimulation. However, NF-kappaB-dependent inflammatory gene expression is persistent in asthmatic bronchi, even after allergen eviction. In the present report we used bronchial brushing samples (BBSs) from heaves-affected horses (a spontaneous model of asthma) to elucidate the mechanisms by which NF-kappaB activity is maintained in asthmatic airways. NF-kappaB activity was high in granulocytic and nongranulocytic BBS cells. However, NF-kappaB activity highly correlated to granulocyte percentage and was only abrogated after granulocytic death in cultured BBSs. Before granulocytic death, NF-kappaB activity was suppressed by simultaneous addition of neutralizing anti-IL-1beta and anti-TNF-alpha Abs to the medium of cultured BBSs. Surprisingly, IkappaB-beta, whose expression is not regulated by NF-kappaB, unlike IkappaB-alpha, was the most prominent NF-kappaB inhibitor found in BBSs. The amounts of IkappaB-beta were low in BBSs obtained from diseased horses, but drastically increased after addition of the neutralizing anti-IL-1beta and anti-TNF-alpha Abs. These results indicate that sustained NF-kappaB activation in asthmatic bronchi is driven by granulocytes and is mediated by IL-1beta and TNF-alpha. Moreover, an imbalance between high levels of IL-1beta- and TNF-alpha-mediated IkappaB-beta degradation and low levels of IkappaB-beta synthesis is likely to be the mechanism preventing NF-kappaB deactivation in asthmatic airways before granulocytic death. [less ▲]

Detailed reference viewed: 50 (6 ULg)
Peer Reviewed
See detailReactive Oxygen Intermediate-Dependent Nf-Kappab Activation by Interleukin-1beta Requires 5-Lipoxygenase or Nadph Oxidase Activity
Bonizzi, Giuseppina; Piette, Jacques ULg; Haterte, Stéphanie ULg et al

in Molecular & Cellular Biology (1999), 19(3), 1950-60

We previously reported that the role of reactive oxygen intermediates (ROIs) in NF-kappaB activation by proinflammatory cytokines was cell specific. However, the sources for ROIs in various cell types are ... [more ▼]

We previously reported that the role of reactive oxygen intermediates (ROIs) in NF-kappaB activation by proinflammatory cytokines was cell specific. However, the sources for ROIs in various cell types are yet to be determined and might include 5-lipoxygenase (5-LOX) and NADPH oxidase. 5-LOX and 5-LOX activating protein (FLAP) are coexpressed in lymphoid cells but not in monocytic or epithelial cells. Stimulation of lymphoid cells with interleukin-1beta (IL-1beta) led to ROI production and NF-kappaB activation, which could both be blocked by antioxidants or FLAP inhibitors, confirming that 5-LOX was the source of ROIs and was required for NF-kappaB activation in these cells. IL-1beta stimulation of epithelial cells did not generate any ROIs and NF-kappaB induction was not influenced by 5-LOX inhibitors. However, reintroduction of a functional 5-LOX system in these cells allowed ROI production and 5-LOX-dependent NF-kappaB activation. In monocytic cells, IL-1beta treatment led to a production of ROIs which is independent of the 5-LOX enzyme but requires the NADPH oxidase activity. This pathway involves the Rac1 and Cdc42 GTPases, two enzymes which are not required for NF-kappaB activation by IL-1beta in epithelial cells. In conclusion, three different cell-specific pathways lead to NF-kappaB activation by IL-1beta: a pathway dependent on ROI production by 5-LOX in lymphoid cells, an ROI- and 5-LOX-independent pathway in epithelial cells, and a pathway requiring ROI production by NADPH oxidase in monocytic cells. [less ▲]

Detailed reference viewed: 20 (0 ULg)
Peer Reviewed
See detailDistinct Signal Transduction Pathways Mediate Nuclear Factor-Kappab Induction by Il-1beta in Epithelial and Lymphoid Cells
Bonizzi, Giuseppina; Piette, Jacques ULg; Merville, Marie-Paule ULg et al

in Journal of Immunology (1997), 159(11), 5264-72

We previously demonstrated that IL-1beta-mediated induction of the nuclear factor-kappaB (NF-kappaB) transcription factor proceeds through the production of reactive oxygen intermediates in lymphoid cells ... [more ▼]

We previously demonstrated that IL-1beta-mediated induction of the nuclear factor-kappaB (NF-kappaB) transcription factor proceeds through the production of reactive oxygen intermediates in lymphoid cells, while it occurs independently of any oxidative stress in epithelial transformed cells. Indeed, inhibition of receptor internalization as well as NH4Cl and chloroquine blocked IL-1beta-mediated induction of NF-kappaB in OVCAR-3 and in other epithelial cell lines but not in lymphoid cells, indicating that distinct pathways are involved. Conversely, while we observed phospholipase A2 activity in both cell types following IL-1beta stimulation, specific inhibitors of this enzyme inhibited NF-kappaB induction only in lymphoid cells. Moreover, expression of the 5-lipoxygenase (5-LOX) enzyme was not detected in epithelial cells, and inhibition of this enzyme blocked NF-kappaB induction by IL-1beta only in lymphoid cells. This study thus indicates that the activation of NF-kappaB following IL-1beta treatment involves the activation of phospholipase A2 and 5-LOX and the production of reactive oxygen intermediates (ROIs) in lymphoid cells, while in epithelial cells, another pathway predominates and could involve the acid sphingomyelinase. Moreover, arachidonic acid could induce NF-kappaB in epithelial and lymphoid cells, but this activation involved the 5-LOX enzyme and the production of ROIs only in lymphoid cells. The inefficiency of the ROI pathway in epithelial cells is probably the consequence of both low ROI production due to undetectable expression of 5-LOX and rapid degradation of hydrogen peroxide due to high catalase activity. [less ▲]

Detailed reference viewed: 30 (4 ULg)
Peer Reviewed
See detailMultiple Redox Regulation in Nf-Kappab Transcription Factor Activation
Piette, Jacques ULg; Piret, Bernard; Bonizzi, Giuseppina et al

in Biological Chemistry (1997), 378(11), 1237-45

The well-known Rel/NF-kappaB family of vertebrate transcription factors comprises a number of structurally related, interacting proteins that bind DNA as dimers and whose activity is regulated by ... [more ▼]

The well-known Rel/NF-kappaB family of vertebrate transcription factors comprises a number of structurally related, interacting proteins that bind DNA as dimers and whose activity is regulated by subcellular location. This family includes many members (p50, p52, RelA, RelB, c-Rel, ...), most of which can form DNA-binding homo- or hetero-dimers. All Rel proteins contain a highly conserved domain of approximately 300 amino-acids, called the Rel homology domain (RH), which contains sequences necessary for the formation of dimers, nuclear localization, DNA binding and IkappaB binding. Nuclear expression and consequent biological action of the eukaryotic NF-kappaB transcription factor complex are tightly regulated through its cytoplasmic retention by ankyrin-rich inhibitory proteins known as IkappaB. The IkappaB proteins include a group of related proteins that interact with Rel dimers and regulate their activities. The interaction of a given IkappaB protein with a Rel complex can affect the Rel complex in distinct ways. In the best characterized example, IkappaB-alpha interacts with a p50/RelA (NF-kappaB) heterodimer to retain the complex in the cytoplasm and inhibit its DNA-binding activity. The NF-kappaB/IkappaB-alpha complex is located in the cytoplasm of most resting cells, but can be rapidly induced to enter the cell nucleus. Upon receiving a variety of signals, many of which are probably mediated by the generation of reactive oxygen species (ROS), IkappaB-alpha undergoes phosphorylation at serine residues by a ubiquitin-dependent protein kinase, is then ubiquitinated at nearby lysine residues and finally degraded by the proteasome, probably while still complexed with NF-kappaB. Removal of IkappaB-alpha uncovers the nuclear localization signals on subunits of NF-kappaB, allowing the complex to enter the nucleus, bind to DNA and affect gene expression. Like proinflammatory cytokines (e.g. IL-1, TNF), various ROS (peroxides, singlet oxygen, ...) as well as UV (C to A) light are capable of mediating NF-kappaB nuclear translocation, while the sensor molecules which are sensitive to these agents and trigger IkappaB-alpha proteolysis are still unidentified. We also show that a ROS-independent mechanism is activated by IL-1beta in epithelial cells and seems to involve the acidic sphingomyelinase/ceramide transduction pathway. [less ▲]

Detailed reference viewed: 64 (2 ULg)
Peer Reviewed
See detailInterleukin-1 Beta Induces Nuclear Factor Kappa B in Epithelial Cells Independently of the Production of Reactive Oxygen Intermediates
Bonizzi, Giuseppina; Dejardin, Emmanuel ULg; Piret, Bernard et al

in European Journal of Biochemistry (1996), 242(3), 544-9

A large body of work has been devoted to tumor necrosis factor alpha or interleukin-1 beta (IL-1 beta) signaling leading to the activation of the transcription factor nuclear factor-kappa B (NF-kappa B ... [more ▼]

A large body of work has been devoted to tumor necrosis factor alpha or interleukin-1 beta (IL-1 beta) signaling leading to the activation of the transcription factor nuclear factor-kappa B (NF-kappa B) in various cell types. Several studies have indicated that NF-kappa B activation depends strictly on the production of reactive oxygen intermediates. In this report, we first demonstrated that IL-1 beta is a potent activator of NF-kappa B in various epithelial transformed cell lines (OVCAR-3, SKOV-3, MCF7 A/Z). In these cells, IL-1 beta rapidly induces NF-kappa B through a complete degradation of I kappa B-alpha, while H2O2 activates NF-kappa B with slower kinetics through a partial degradation of I kappa B-alpha, p100 and p105. We showed that IL-1 beta-mediated induction of NF-kappa B in OVCAR-3 and in other epithelial cell lines does not proceed through the production of reactive oxygen intermediates, while the same cytokine activates NF-kappa B in lymphoid cells through the intracellular generation of H2O2. Our study demonstrated that several signaling pathways lead to the activation of NF-kappa B, following IL-1 beta treatment in different cell types. [less ▲]

Detailed reference viewed: 37 (0 ULg)
Peer Reviewed
See detailHighly-Expressed P100/P52 (Nfkb2) Sequesters Other Nf-Kappa B-Related Proteins in the Cytoplasm of Human Breast Cancer Cells
Dejardin, Emmanuel ULg; Bonizzi, Giuseppina; Bellahcene, Akeila ULg et al

in Oncogene (1995), 11(9), 1835-41

Several observations have suggested that NF-kappa B transcription factors could be involved in carcinogenesis. To investigate the possibility that members of the NF-kappa B family participate in the ... [more ▼]

Several observations have suggested that NF-kappa B transcription factors could be involved in carcinogenesis. To investigate the possibility that members of the NF-kappa B family participate in the molecular control of the transformed phenotype, we examined the expression of these proteins in human breast cancer cell lines as well as in primary tumors. Western Immunoblots demonstrated high expression of the p52 precursor p100 (NFKB2) in several breast cancer cell lines while human mammary epithelial cells express this protein only faintly. Eighteen primary breast tumors out of 24 displayed significant expression of the p100/p52 protein. In MDA-MB-435 cells, overexpressed p100 and p52 are predominantly cytoplasmic and coimmunoprecipitation experiments demonstrated that p100 sequesters the heterodimer p50/p65 in the cytoplasm. We demonstrate that most p65 protein is complexed with p100 in these cells while it is complexed predominantly with I kappa B-alpha in cell lines expressing less p100. Our data strengthen the hypothesis that NF-kappa B could be involved in carcinogenesis and suggest that the p100/p52 NF-kappa B subunit could play a role in the development of human breast cancers, possibly by sequestering other NF-kappa B-related proteins in the cytoplasm. [less ▲]

Detailed reference viewed: 52 (4 ULg)