References of "Bonfond, Bertrand"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe tails of the satellite auroral footprints at Jupiter
Bonfond, Bertrand ULg; Saur, J.; Grodent, Denis ULg et al

in Journal of Geophysical Research. Space Physics (2017), 122

The electro-magnetic interaction between Io, Europa and Ganymede and the rotating plasma that surrounds Jupiter has a signature in the aurora of the planet. This signature, called the satellite footprint ... [more ▼]

The electro-magnetic interaction between Io, Europa and Ganymede and the rotating plasma that surrounds Jupiter has a signature in the aurora of the planet. This signature, called the satellite footprint, takes the form of a series of spots located slightly downstream of the feet of the field lines passing through the moon under consideration. In the case of Io, these spots are also followed by an extended tail in the downstream direction relative to the plasma flow encountering the moon. A few examples of a tail for the Europa footprint have also been reported in the northern hemisphere. Here we present a simplified Alfvénic model for footprint tails and simulations of vertical brightness profiles for various electron distribution, which favour such a model over quasi-static models. We also report here additional cases of Europa footprint tails, in both hemispheres, even though such detections are rare and difficult. Furthermore, we show that the Ganymede footprint can also be followed by a similar tail. Finally, we present a case of a 320° long Io footprint tail, while other cases in similar configurations do not display such a length. [less ▲]

Detailed reference viewed: 35 (4 ULg)
Full Text
Peer Reviewed
See detailSimilarity of the Jovian satellite footprints: spots multiplicity and dynamics
Bonfond, Bertrand ULg; Grodent, Denis ULg; Badman, S. V. et al

in Icarus (2017), 292(2017), 208217

In the magnetospheres of Jupiter and Saturn, the intense interaction of the satellites Io, Europa, Ganymede and Enceladus with their surrounding plasma environment leaves a signature in the aurora of the ... [more ▼]

In the magnetospheres of Jupiter and Saturn, the intense interaction of the satellites Io, Europa, Ganymede and Enceladus with their surrounding plasma environment leaves a signature in the aurora of the planet. Called satellite footprints, these auroral features appear either as a single spot (Europa and Enceladus) or as multiple spots (Io and Ganymede). Moreover, they can be followed by extended trailing tails in the case of Io and Europa, while no tail has been reported for Ganymede and Enceladus, yet. Here we show that all Jovian footprints can be made of several spots. Furthermore, the footprints all experience brightness variations on timescale of 2-3 minutes. We also demonstrate that the satellite location relative to the plasma sheet is not the only driver for the footprint brightness, but that the plasma environment and the magnetic field strength also play a role. These new findings demonstrate that the Europa and Ganymede footprints are very similar to the Io footprint. As a consequence, the processes expected to take place at Io, such as the bi-directional electron acceleration by Alfvén waves or the partial reflection of these waves on plasma density gradients, can most likely be extended to the other footprints, suggesting that they are indeed universal processes. [less ▲]

Detailed reference viewed: 82 (20 ULg)
Full Text
See detailNorth and South: Simultaneous observations of both Jovian poles from Juno and the Hubble Space Telescope
Bonfond, Bertrand ULg; Gladstone, George R.; Grodent, Denis ULg et al

Poster (2017, June 15)

On its elongated orbit, Juno flies over the poles of Jupiter every 53.5 days. The few hours before and after the perijove offer unique opportunities to observe the whole polar region from close distance ... [more ▼]

On its elongated orbit, Juno flies over the poles of Jupiter every 53.5 days. The few hours before and after the perijove offer unique opportunities to observe the whole polar region from close distance. However, Juno’s instruments can only observe one hemisphere at a time. Fortunately, the Hubble Space Telescope points its 2.4 m mirror toward the opposite hemisphere during some of these time intervals, providing truly simultaneous observations of both poles. We compare observations from Juno-UVS with Far-UV imaging sequences from the Hubble’s Space Telescope Imaging Spectrograph (STIS). Juno-UVS acquires spectrally resolved images of 17 ms exposure every 30 s Juno spin in the 70-205 nm wavelength range, while STIS can acquire about 270 consecutive 10 s images per HST orbit in the 130-160 nm range, but without any spectral resolution. Despite some differences, these datasets are similar enough in terms of spectral coverage, temporal and spatial resolution to allow direct comparisons. On Jupiter, the magnetic field is highly asymmetric and displays significant localized anomalies. Furthermore, most processes leading to auroral emissions depend on the magnetic field magnitude, either in the equatorial plane, in the acceleration regions, or in the upper atmosphere. Investigating morphological and brightness discrepancies between the two hemispheres provides precious clues on the current systems flowing in the magnetosphere and on the charged particles acceleration mechanisms. [less ▲]

Detailed reference viewed: 18 (4 ULg)
Full Text
Peer Reviewed
See detailMorphology of the UV aurorae Jupiter during Juno’s first perijove observations
Bonfond, Bertrand ULg; Gladstone, G. R.; Grodent, Denis ULg et al

in Geophysical Research Letters (2017)

On 27 August 2016, the NASA Juno spacecraft performed its first close-up observations of Jupiter during its perijove. Here we present the UV images and color ratio maps from the Juno-ultraviolet ... [more ▼]

On 27 August 2016, the NASA Juno spacecraft performed its first close-up observations of Jupiter during its perijove. Here we present the UV images and color ratio maps from the Juno-ultraviolet spectrometer UV imaging spectrograph acquired at that time. Data were acquired during four sequences (three in the north, one in the south) from 5:00 UT to 13:00 UT. From these observations, we produced complete maps of the Jovian aurorae, including the nightside. The sequence shows the development of intense outer emission outside the main oval, first in a localized region (255 ∘ –295 ∘ System III longitude) and then all around the pole, followed by a large nightside protrusion of auroral emissions from the main emission into the polar region. Some localized features show signs of differential drift with energy, typical of plasma injections in the middle magnetosphere. Finally, the color-ratio map in the north shows a well-defined area in the polar region possibly linked to the polar cap. [less ▲]

Detailed reference viewed: 44 (13 ULg)
Full Text
See detailHST observations of Jupiter's UV aurora during Juno's orbits PJ03, PJ04 and PJ05
Grodent, Denis ULg; Gladstone, G Randall; Clarke, John T. et al

Poster (2017, April)

The intense ultraviolet auroral emissions of Jupiter are currently being monitored in the frame of a large Hubble Space Telescope (HST) program meant to support the NASA Juno prime mission. The present ... [more ▼]

The intense ultraviolet auroral emissions of Jupiter are currently being monitored in the frame of a large Hubble Space Telescope (HST) program meant to support the NASA Juno prime mission. The present study addresses the three first Juno orbits (PJ03, 04 and 05) during which HST obtained parallel observations. These three campaigns basically consist of a 2-week period bracketing the time of Juno’s closest approach of Jupiter (CA). At least one HST visit is scheduled every day during the week before and the week following CA. During the ∼12-hour period centered on CA and depending on observing constraints, several HST visits are programmed in order to obtain as many simultaneous observations with Juno-UVS as possible. In addition, at least one HST visit is obtained near Juno’s apojove, when UVS is continuously monitoring Jupiter’s global auroral power, without spatial resolution, for about 12 hours. We are using the Space Telescope Imaging Spectrograph (STIS) in time-tag mode in order to provide spatially resolved movies of Jupiter’s highly dynamic aurora with timescales ranging from seconds to several days. We discuss the preliminary exploitation of the HST data and present these results in such a way as to provide a global magnetospheric context for the different Juno instruments studying Jupiter’s magnetosphere, as well as for the numerous ground based and space based observatories participating to the Juno mission. [less ▲]

Detailed reference viewed: 21 (3 ULg)
Full Text
See detailJuno and the first UVS results from PJ1
Bonfond, Bertrand ULg

Scientific conference (2017, February 14)

Detailed reference viewed: 35 (3 ULg)
Full Text
Peer Reviewed
See detailStagnation of Saturn's auroral emission at noon
Radioti, Aikaterini ULg; Grodent, Denis ULg; Gérard, Jean-Claude ULg et al

in Journal of Geophysical Research. Space Physics (2017)

Detailed reference viewed: 30 (3 ULg)
Full Text
Peer Reviewed
See detailJupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits
Connerney, J. E. P.; Adriani, A.; Allegrini, F. et al

in Science (2017), 356(6340), 826--832

Jupiter is the largest and most massive planet in our solar system. NASA\textquoterights Juno spacecraft arrived at Jupiter on 4 July 2016 and made its first close pass on 27 August 2016. Bolton et al ... [more ▼]

Jupiter is the largest and most massive planet in our solar system. NASA\textquoterights Juno spacecraft arrived at Jupiter on 4 July 2016 and made its first close pass on 27 August 2016. Bolton et al. present results from Juno\textquoterights flight just above the cloud tops, including images of weather in the polar regions and measurements of the magnetic and gravitational fields. Juno also used microwaves to peer below the visible surface, spotting gas welling up from the deep interior. Connerney et al. measured Jupiter\textquoterights aurorae and plasma environment, both as Juno approached the planet and during its first close orbit.Science, this issue p. 821, p. 826The Juno spacecraft acquired direct observations of the jovian magnetosphere and auroral emissions from a vantage point above the poles. Juno\textquoterights capture orbit spanned the jovian magnetosphere from bow shock to the planet, providing magnetic field, charged particle, and wave phenomena context for Juno\textquoterights passage over the poles and traverse of Jupiter\textquoterights hazardous inner radiation belts. Juno\textquoterights energetic particle and plasma detectors measured electrons precipitating in the polar regions, exciting intense aurorae, observed simultaneously by the ultraviolet and infrared imaging spectrographs. Juno transited beneath the most intense parts of the radiation belts, passed about 4000 kilometers above the cloud tops at closest approach, well inside the jovian rings, and recorded the electrical signatures of high-velocity impacts with small particles as it traversed the equator. [less ▲]

Detailed reference viewed: 76 (5 ULg)
Full Text
Peer Reviewed
See detailResponse of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno
Nichols, J. D.; Badman, S. V.; Bagenal, F. et al

in Geophysical Research Letters (2017)

We present the first comparison of Jupiter's auroral morphology with an extended, continuous and complete set of near-Jupiter interplanetary data, revealing the response of Jupiter's auroras to the ... [more ▼]

We present the first comparison of Jupiter's auroral morphology with an extended, continuous and complete set of near-Jupiter interplanetary data, revealing the response of Jupiter's auroras to the interplanetary conditions. We show that for ∼1-3 days following compression region onset the planet's main emission brightened. A duskside poleward region also brightened during compressions, as well as during shallow rarefaction conditions at the start of the program. The power emitted from the noon active region did not exhibit dependence on any interplanetary parameter, though the morphology typically differed between rarefactions and compressions. The auroras equatorward of the main emission brightened over ∼10 days following an interval of increased volcanic activity on Io. These results show that the dependence of Jupiter's magnetosphere and auroras on the interplanetary conditions are more diverse than previously thought. [less ▲]

Detailed reference viewed: 21 (1 ULg)
Full Text
Peer Reviewed
See detailJuno-UVS Approach Observations of Jupiter's Auroras
Gladstone, G. R.; Versteeg, M. H.; Greathouse, T. K. et al

in Geophysical Research Letters (2017)

Juno-UVS observations of Jupiter's aurora obtained during approach are presented. Prior to the bow-shock crossing on 24 June 2016, the Juno approach provided a rare opportunity to correlate local solar ... [more ▼]

Juno-UVS observations of Jupiter's aurora obtained during approach are presented. Prior to the bow-shock crossing on 24 June 2016, the Juno approach provided a rare opportunity to correlate local solar wind conditions with Jovian auroral emissions. Some of Jupiter's auroral emissions are expected to be controlled or modified by local solar wind conditions. Here we compare synoptic Juno-UVS observations of Jupiter's auroral emissions, acquired during 3-29 June 2016, with in situ solar wind observations, and related Jupiter observations from Earth. Four large auroral brightening events are evident in the synoptic data, in which the total emitted auroral power increases by a factor of 3-4 for a few hours. Only one of these brightening events correlates well with large transient increases in solar wind ram pressure. The brightening events which are not associated with the solar wind generally have a rise time of ~2 hours and a decay time of ~5 hours. [less ▲]

Detailed reference viewed: 17 (2 ULg)
Full Text
See detailThe complex behavior of the satellite footprints at Jupiter: the result of universal processes?
Bonfond, Bertrand ULg; Grodent, Denis ULg; Badman, Sarah V. et al

Poster (2016, December 14)

At Jupiter, some auroral emissions are directly related to the electromagnetic interaction between the moons Io, Europa and Ganymede on one hand and the rapidly rotating magnetospheric plasma on the other ... [more ▼]

At Jupiter, some auroral emissions are directly related to the electromagnetic interaction between the moons Io, Europa and Ganymede on one hand and the rapidly rotating magnetospheric plasma on the other hand. Out of the three, the Io footprint is the brightest and the most studied. Present in each hemisphere, it is made of at least three different spots and an extended trailing tail. The variability of the brightness of the spots as well as their relative location has been tentatively explained with a combination of Alfvén waves’ partial reflections on density gradients and bi-directional electron acceleration at high latitude. Should this scenario be correct, then the other footprints should also show the same behavior. Here we show that all footprints are, at least occasionally, made of several spots and they all display a tail. We also show that these spots share many characteristics with those of the Io footprint (i.e. some significant variability on timescales of 2-3 minutes). Additionally, we present some Monte-Carlo simulations indicating that the tails are also due to Alfvén waves electron acceleration rather than quasi-static electron acceleration. Even if some details still need clarification, these observations strengthen the scenario proposed for the Io footprint and thus indicate that these processes are universal. In addition, we will present some early results from Juno-UVS concerning the location and morphology of the footprints during the first low-altitude observations of the polar aurorae. These observations, carried out in previously unexplored longitude ranges, should either confirm or contradict our understanding of the footprints. [less ▲]

Detailed reference viewed: 39 (7 ULg)
Full Text
See detailJupiter’s auroras during the Juno approach phase as observed by the Hubble Space Telescope
Nichols, Jonathan D; Clarke, John T; Orton, Glennn S et al

Conference (2016, December 13)

We present movies of the Hubble Space Telescope (HST) observations of Jupiter’s FUV auroras observed during the Juno approach phase and first capture orbit, and compare with Juno observations of the ... [more ▼]

We present movies of the Hubble Space Telescope (HST) observations of Jupiter’s FUV auroras observed during the Juno approach phase and first capture orbit, and compare with Juno observations of the interplanetary medium near Jupiter and inside the magnetosphere. Jupiter’s FUV auroras indicate the nature of the dynamic processes occurring in Jupiter’s magnetosphere, and the approach phase provided a unique opportunity to obtain a full set of interplanetary data near to Jupiter at the time of a program of HST observations, along with the first simultaneous with Juno observations inside the magnetosphere. The overall goal was to determine the nature of the solar wind effect on Jupiter’s magnetosphere. HST observations were obtained with typically 1 orbit per day over three intervals: 16 May – 7 June, 22-30 June and 11-18 July, i.e. while Juno was in the solar wind, around the bow shock and magnetosphere crossings, and in the mid-latitude middle-outer magnetospheres. We show that these intervals are characterised by particularly dynamic polar auroras, and significant variations in the auroral power output caused by e.g. dawn storms, intense main emission and poleward forms. We compare the variation of these features with Juno observations of interplanetary compression regions and the magnetospheric environment during the intervals of these observations. [less ▲]

Detailed reference viewed: 38 (5 ULg)
Full Text
See detailInitial observations of Jupiter’s aurora from Juno’s Ultraviolet Spectrograph (Juno-UVS)
Gladstone, Randy; Versteeg; Greathouse, Thomas et al

Conference (2016, December 13)

Juno-UVS is an imaging spectrograph with a bandpass of 70<λ<205 nm. This wavelength range includes important far-ultraviolet (FUV) emissions from the H2 bands and the H Lyman series which are produced in ... [more ▼]

Juno-UVS is an imaging spectrograph with a bandpass of 70<λ<205 nm. This wavelength range includes important far-ultraviolet (FUV) emissions from the H2 bands and the H Lyman series which are produced in Jupiter’s auroras, and also the absorption signatures of aurorally-produced hydrocarbons. The Juno-UVS instrument telescope has a 4x4 cm2 input aperture and uses an off-axis parabolic primary mirror. A flat scan mirror situated near the entrance of the telescope is used to observe at up to ±30° perpendicular to the Juno spin plane. The light is focused onto the spectrograph entrance slit, which has a “dog-bone” shape, with three sections of 2.55°x0.2°, 2.0°x0.025°, and 2.55°x0.2° (as projected onto the sky). Light entering the slit is dispersed by a toroidal grating which focuses FUV light onto a curved microchannel plate (MCP) cross delay line (XDL) detector with a solar blind UV-sensitive CsI photocathode. The two mirrors and the grating are coated with MgF2 to improve FUV reflectivity. Tantalum surrounds the spectrograph assembly to shield the detector and its electronics from high-energy electrons. All other electronics are located in Juno’s spacecraft vault, including redundant low-voltage and high-voltage power supplies, command and data handling electronics, heater/actuator electronics, scan mirror electronics, and event processing electronics. The purpose of Juno-UVS is to remotely sense Jupiter’s auroral morphology and brightness to provide context for in situ measurements by Juno’s particle instruments. Here we present the first near-Jupiter results from the UVS instrument following measurements made during PJ1, Juno’s first perijove pass with its instruments powered on and taking data. [less ▲]

Detailed reference viewed: 45 (5 ULg)
Full Text
See detailSearch for low-latitude atmospheric hydrocarbon variations on Jupiter from Juno-UVS measurements
Hue, Vincent; Gladstone, Randy; Greathouse, Thomas et al

Conference (2016, December 13)

The Juno mission offers the opportunity to study Jupiter, from its inner structure, up to its magnetospheric environment. Juno was launched on August 2011 and its Jupiter orbit insertion (JOI) occurred on ... [more ▼]

The Juno mission offers the opportunity to study Jupiter, from its inner structure, up to its magnetospheric environment. Juno was launched on August 2011 and its Jupiter orbit insertion (JOI) occurred on July 4th 2016. The nominal Juno mission involves 35 science polar-orbits of 14-days period, with perijove and apojove distances located at 0.06 Rj and 45 Rj, respectively. Juno-UVS is a UV spectrograph with a bandpass of 70<λ<205 nm, designed to characterize Jupiter UV emissions. One of the main additions of UVS compared to its predecessors (New Horizons- and Rosetta- Alice, LRO-LAMP) is a 2.54 mm tantalum shielding, to protect it from the harsh radiation environment at Jupiter, and a scan mirror, to allow for targeting specific auroral and atmospheric features at +/- 30˚ perpendicular to the Juno spin plane. It will provide new constraints on Jupiter’s auroral morphology, spectral features, and vertical structure, while providing remote-sensing constraints for the onboard waves and particle instruments. It will also be used to probe upper-atmospheric composition through absorption features found in the UV spectra using reflected solar UV radiation. For example, stratospheric hydrocarbons such as C2H2 and C2H6 are known to absorb significantly in the 150-180 nm regions, and these absorption features can be used to determine their abundances. We will present our search for the spectroscopic features seen in Jupiter’s reflected sunlight during the first perijove. [less ▲]

Detailed reference viewed: 27 (4 ULg)
Full Text
Peer Reviewed
See detailDynamics of the flares in the active polar region of Jupiter
Bonfond, Bertrand ULg; Grodent, Denis ULg; Badman, S. V. et al

in Geophysical Research Letters (2016)

The dusk-side of the polar region of Jupiter's UV aurorae, called the active region, sometimes exhibits quasi-periodic (QP) flares on time-scales of 2-3 minutes. Based on Hubble Space Telescope Far-UV ... [more ▼]

The dusk-side of the polar region of Jupiter's UV aurorae, called the active region, sometimes exhibits quasi-periodic (QP) flares on time-scales of 2-3 minutes. Based on Hubble Space Telescope Far-UV time-tag images, we show for the first time that the northern hemisphere also displays QP-flares. The area covered by these flares can reach up to 2.4 × 108 km2 (i.e. the whole active region), but often only involves an area an order of magnitude smaller. Using a magnetic field mapping model, we deduced that these areas correspond to the dayside outer magnetosphere. In our dataset, quasi-periodic features are only seen on half of the cases and even on a given observation, a region can be quiet for one half and blinking on the other half. Consecutive observations in the two hemispheres show that the brightening can occur in phase. Combined with the size and location of the flares, this behaviour suggests that the QP-flares most likely take place on closed magnetic field lines. [less ▲]

Detailed reference viewed: 44 (9 ULg)
Full Text
See detailFirst Hubble Space Telescope Movies of Jupiter’s Ultraviolet Aurora During the NASA Juno Prime Mission
Grodent, Denis ULg; Gladstone, G. Randall; Clarke, John T. et al

Poster (2016, December)

The primary goal of this HST campaign is to complement Juno-UVS (Ultraviolet Spectrograph) observations. This complementarity is four-fold as HST observes Jupiter’s aurora when: 1) Juno-UVS is turned off ... [more ▼]

The primary goal of this HST campaign is to complement Juno-UVS (Ultraviolet Spectrograph) observations. This complementarity is four-fold as HST observes Jupiter’s aurora when: 1) Juno-UVS is turned off, that is about 98% of Juno’s 14-day orbit, and Juno’s in situ instruments are in operation. 2) Juno-UVS is operating, but observes the opposite hemisphere of Jupiter. 3) UVS is on in the same hemisphere, but too close to Jupiter to have a global, contextual, view of the aurora and/or UVS is affected by the noise induced by Jupiter’s radiation belts. 4) Juno is too far from Jupiter to get a detailed view of the aurora. In addition, HST will observe the auroral and airglow emissions of the Galilean moons Io, Ganymede and Europa, when UVS is measuring their auroral footprints in Jupiter’s ionosphere. During this campaign, HST is obtaining 45-min STIS time-tag images -movies- of both hemispheres of Jupiter and STIS/COS spectra of Jupiter's moons. These observations are taking place during 4 sequences of Juno's orbit (Figure: typical orbit in magnetic coordinates): 1) Perijove segment: a 6-hour sequence bracketing the time of Juno's closest approach of Jupiter. 2) Crossing segments: few hours periods during which Juno is crossing the magnetic equator of Jupiter and in situ instruments are observing the plasma sheet particles. 3) Perijove +/- 1 Jovian rotation (or more), to provide a context for the auroral activity before and after perijove. 4) Apojove segment: a 12-hour period bracketing the time when Juno is farthest from Jupiter and Juno-UVS is continuously monitoring the global auroral UV power of Jupiter. During Juno orbit PJ5, between 28 Nov. and 07 Dec. 2016, HST obtains 9 STIS movies: 3 movies of the northern aurora near perijove, 1 movie (north) one Jovian rotation before and 2 movies (south- north) one and two Jovian rotations after perijove, 2 movies (north) during two close CS crossings, and 1 movie near apojove. These movies will be commented during this presentation. [less ▲]

Detailed reference viewed: 56 (3 ULg)
See detailJuno Ultraviolet Spectrograph (Juno-UVS) Observations of Jupiter during Approach
Gladstone, G. Randall; Versteeg, Maarten; Greathouse, Thomas K. et al

Conference (2016, October)

We present the initial results from Juno Ultraviolet Spectrograph (Juno-UVS) observations of Jupiter obtained during approach in June 2016. Juno-UVS is an imaging spectrograph with a bandpass of 70<λ<205 ... [more ▼]

We present the initial results from Juno Ultraviolet Spectrograph (Juno-UVS) observations of Jupiter obtained during approach in June 2016. Juno-UVS is an imaging spectrograph with a bandpass of 70<λ<205 nm. This wavelength range includes all important ultraviolet (UV) emissions from the H<SUB>2</SUB> bands and the H Lyman series which are produced in Jupiter's auroras, and also the absorption signatures of aurorally-produced hydrocarbons. The Juno-UVS instrument telescope has a 4 x 4 cm<SUP>2</SUP> input aperture and uses an off-axis parabolic primary mirror. A flat scan mirror situated near the entrance of the telescope is used to observe at up to ±30° perpendicular to the Juno spin plane. The light is focused onto the spectrograph entrance slit, which has a "dog-bone" shape 7.2° long, in three sections of 0.2°, 0.025°, and 0.2° width (as projected onto the sky). Light entering the slit is dispersed by a toroidal grating which focuses UV light onto a curved microchannel plate (MCP) cross delay line (XDL) detector with a solar blind UV-sensitive CsI photocathode. Tantalum surrounds the spectrograph assembly to shield the detector and its electronics from high-energy electrons. All other electronics are located in Juno's spacecraft vault, including redundant low-voltage and high-voltage power supplies, command and data handling electronics, heater/actuator electronics, scan mirror electronics, and event processing electronics. The purpose of Juno-UVS is to remotely sense Jupiter's auroral morphology and brightness to provide context for in situ measurements by Juno's particle instruments. Prior to Jupiter Orbit Insertion (JOI) on July 5, Juno approach observations provide a rare opportunity to correlate local solar wind conditions with Jovian auroral emissions. Some of Jupiter's auroral emissions (e.g., polar emissions) may be controlled or at least affected by the solar wind. Here we compare synoptic Juno-UVS observations of Jupiter's auroral emissions (~40 minutes per hour, acquired during 2016 June 3-30) with in situ solar wind observations, as well as related Jupiter observations obtained from Earth. [less ▲]

Detailed reference viewed: 21 (1 ULg)
See detailUV emissions of Jupiter: exploration of the high-latitude regions through the UV spectrograph on NASA's Juno mission
Hue, Vincent; Gladstone, G. Randall; Versteeg, Maarten et al

Conference (2016, October)

The Juno mission offers the opportunity to study Jupiter, from its inner structure to its magnetospheric environment. Juno was launched on August 2011 and its Jupiter orbit insertion (JOI) planned for ... [more ▼]

The Juno mission offers the opportunity to study Jupiter, from its inner structure to its magnetospheric environment. Juno was launched on August 2011 and its Jupiter orbit insertion (JOI) planned for July 4th 2016, will place Juno in a 53.5 days capture orbit. A period reduction maneuver will be performed two orbits later to place Juno into 14-days elliptical orbits for the duration of the nominal mission, which includes 36 orbits. Juno-UVS is a UV spectrograph with a bandpass of 70 ≤ λ ≤ 205 nm, designed to characterize Jupiter UV emissions. One of the main additions of UVS compared to its predecessors is a 2.54 mm tantalum shielding, to protect it from the harsh radiation environment at Jupiter, and a scan mirror, to allow for targeting specific auroral regions during perijove passes. The scan mirror is located at the front end of the instrument and will be used to look at +/- 30° perpendicular to the Juno spin plane. The entrance slit of UVS has a dog-bone shape composed by three sections with field of views of 0.2°x2.5°, 0.025°x2.0° and 0.2°x2.5°, as projected onto the sky. It will provide new constraints on Jupiter’s auroral nightside morphology and spectral features as well as the vertical structure of these emissions. It will bring remote-sensing constraints for the onboard waves and particle instruments (JADE, JEDI, Waves and MAG). The ability to change the pointing will allow relating the observed UV brightness of the regions magnetically connected to where Juno flies with the particles and waves measurements. We will discuss the planned observations and scientific targets for the nominal mission orbital sequence, which will consist of three UV datasets per orbit. We will present the results from the first orbit. As Juno orbit evolves during the mission, we will also present how these objectives evolve over time. [less ▲]

Detailed reference viewed: 36 (3 ULg)
See detailUVS – JIRAM image comparison during Juno PJ1
Gérard, Jean-Claude ULg; Bonfond, Bertrand ULg; Grodent, Denis ULg et al

Conference (2016, September 27)

We present a comparison between images collected in the infrared and ultraviolet by the JIRAM and IUVS spectral imagers on board the Juno orbiter. Similarities and differences are pointed out.

Detailed reference viewed: 22 (2 ULg)
Full Text
See detailAnalysis of the Jovian aurorae
Bonfond, Bertrand ULg

Conference (2016, September)

Detailed reference viewed: 11 (3 ULg)