References of "Boisse, I"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailAnalysis of Spin-Orbit Alignment in the WASP-32, WASP-38, and HAT-P-27/WASP-40 Systems
Brown, D. J. A.; Collier Cameron, A.; Díaz, R. F. et al

in Astrophysical Journal (2012), 760

We present measurements of the spin-orbit alignment angle, λ, for the hot Jupiter systems WASP-32, WASP-38, and HAT-P-27/WASP-40, based on data obtained using the HARPS spectrograph. We analyze the ... [more ▼]

We present measurements of the spin-orbit alignment angle, λ, for the hot Jupiter systems WASP-32, WASP-38, and HAT-P-27/WASP-40, based on data obtained using the HARPS spectrograph. We analyze the Rossiter-McLaughlin effect for all three systems and also carry out Doppler tomography for WASP-32 and WASP-38. We find that WASP-32 (T [SUB]eff[/SUB] = 6140[SUP]+90[/SUP] [SUB]- 100[/SUB] K) is aligned, with an alignment angle of λ = 10fdg5[SUP] + 6.4[/SUP] [SUB] - 6.5[/SUB] obtained through tomography, and that WASP-38 (T [SUB]eff[/SUB] = 6180[SUP]+40[/SUP] [SUB]- 60[/SUB] K) is also aligned, with tomographic analysis yielding λ = 7fdg5[SUP] + 4.7[/SUP] [SUB] - 6.1[/SUB]. The latter result provides an order-of-magnitude improvement in the uncertainty in λ compared to the previous analysis of Simpson et al. We are only able to loosely constrain the angle for HAT-P-27/WASP-40 (T [SUB]eff[/SUB] = 5190[SUP]+160[/SUP] [SUB]- 170[/SUB] K) to λ = 24fdg2[SUP] + 76.0[/SUP] [SUB] - 44.5[/SUB], owing to the poor signal-to-noise ratio of our data. We consider this result a non-detection under a slightly updated version of the alignment test of Brown et al. We place our results in the context of the full sample of spin-orbit alignment measurements, finding that they provide further support for previously established trends. Based on observations (under proposal 087.C-0649) made using the HARPS High Resolution Échelle Spectrograph mounted on the ESO 3.6 m at the ESO La Silla observatory. [less ▲]

Detailed reference viewed: 10 (1 ULg)
Full Text
Peer Reviewed
See detailRossiter-McLaughlin effect measurements for WASP-16, WASP-25 and WASP-31★
Brown, D J A; Cameron, A Collier; Anderson, D R et al

in Monthly Notices of the Royal Astronomical Society (2012)

We present new measurements of the Rossiter-McLaughlin (RM) effect for three Wide Angle Search for transiting Planets (WASP) planetary systems, WASP-16, WASP-25 and WASP-31, from a combined analysis of ... [more ▼]

We present new measurements of the Rossiter-McLaughlin (RM) effect for three Wide Angle Search for transiting Planets (WASP) planetary systems, WASP-16, WASP-25 and WASP-31, from a combined analysis of their complete sets of photometric and spectroscopic data. We find a low-amplitude RM effect for WASP-16 (T[SUB]eff[/SUB]= 5700 ± 150 K), suggesting that the star is a slow rotator and thus of an advanced age, and obtain a projected alignment angle of ?. For WASP-25 (T[SUB]eff[/SUB]= 5750 ± 100 K), we detect a projected spin-orbit angle of λ= 14°.6 ± 6°.7. WASP-31 (T[SUB]eff[/SUB]= 6300 ± 100 K) is found to be well aligned, with a projected spin-orbit angle of λ= 2°.8 ± 3°.1. A circular orbit is consistent with the data for all three systems, in agreement with their respective discovery papers. We consider the results for these systems in the context of the ensemble of RM measurements made to date. We find that whilst WASP-16 fits the hypothesis of Winn et al. that 'cool' stars (T[SUB]eff[/SUB] < 6250 K) are preferentially aligned, WASP-31 has little impact on the proposed trend. We bring the total distribution of the true spin-orbit alignment angle, ψ, up to date, noting that recent results have improved the agreement with the theory of Fabrycky & Tremaine at mid-range angles. We also suggest a new test for judging misalignment using the Bayesian information criterion, according to which WASP-25 b's orbit should be considered to be aligned. [less ▲]

Detailed reference viewed: 16 (1 ULg)
Full Text
Peer Reviewed
See detailWASP-23b: a transiting hot Jupiter around a K dwarf and its Rossiter-McLaughlin effect
Triaud, A H M J; Queloz, D.; Hellier, C. et al

in Astronomy and Astrophysics (2011), 531

We report the discovery of a new transiting planet in the southern hemisphere. It was found by the WASP-south transit survey and confirmed photometrically and spectroscopically by the 1.2 m Swiss Euler ... [more ▼]

We report the discovery of a new transiting planet in the southern hemisphere. It was found by the WASP-south transit survey and confirmed photometrically and spectroscopically by the 1.2 m Swiss Euler telescope, LCOGT 2m Faulkes South Telescope, the 60 cm TRAPPIST telescope, and the ESO 3.6 m telescope. The orbital period of the planet is 2.94 days. We find that it is a gas giant with a mass of 0.88 ± 0.10 M[SUB]J[/SUB] and an estimated radius of 0.96 ± 0.05 R[SUB]J[/SUB]. We obtained spectra during transit with the HARPS spectrograph and detect the Rossiter-McLaughlin effect despite its small amplitude. Because of the low signal-to-noise ratio of the effect and a small impact parameter, we cannot place a strong constraint on the projected spin-orbit angle. We find two conflicting values for the stellar rotation. We find, via spectral line broadening, that v sin I = 2.2 ± 0.3 km s[SUP]-1[/SUP], while applying another method, based on the activity level using the index log R'_HK, gives an equatorial rotation velocity of only v = 1.35 ± 0.20 km s[SUP]-1[/SUP]. Using these as priors in our analysis, the planet might be either misaligned or aligned. This result raises doubts about the use of such priors. There is evidence of neither eccentricity nor any radial velocity drift with time. Using WASP-South photometric observations confirmed with LCOGT Faulkes South Telescope, the 60 cm TRAPPIST telescope, the CORALIE spectrograph and the camera from the Swiss 1.2 m Euler Telescope placed at La Silla, Chile, as well as with the HARPS spectrograph, mounted on the ESO 3.6 m, also at La Silla, under proposal 084.C-0185. The data is publicly available at the CDS Strasbourg and on demand to the main author.RV data is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/531/A24">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/531/A24</A>Appendix is available in electronic form at <A href="http://www.aanda.org">http://www.aanda.org</A> [less ▲]

Detailed reference viewed: 8 (2 ULg)
Full Text
Peer Reviewed
See detailThe spin-orbit angles of the transiting exoplanets WASP-1b, WASP-24b, WASP-38b and HAT-P-8b from Rossiter-McLaughlin observations
Simpson, E. K.; Pollacco, D.; Collier Cameron, A. et al

in Monthly Notices of the Royal Astronomical Society (2011), 414

We present observations of the Rossiter-McLaughlin effect for the transiting exoplanet systems WASP-1, WASP-24, WASP-38 and HAT-P-8, and deduce the orientations of the planetary orbits with respect to the ... [more ▼]

We present observations of the Rossiter-McLaughlin effect for the transiting exoplanet systems WASP-1, WASP-24, WASP-38 and HAT-P-8, and deduce the orientations of the planetary orbits with respect to the host stars' rotation axes. The planets WASP-24b, WASP-38b and HAT-P-8b appear to move in prograde orbits and be well aligned, having sky-projected spin orbit angles consistent with zero: {\lambda} = -4.7 \pm 4.0{\deg}, {\lambda} = 15 + 33{\deg}/-43{\deg} and {\lambda} = -9.7 +9.0{\deg}/-7.7{\deg}, respectively. The host stars have Teff < 6250 K and conform with the trend of cooler stars having low obliquities. WASP-38b is a massive planet on a moderately long period, eccentric orbit so may be expected to have a misaligned orbit given the high obliquities measured in similar systems. However, we find no evidence for a large spin-orbit angle. By contrast, WASP-1b joins the growing number of misaligned systems and has an almost polar orbit, {\lambda} = -79 +4.5{\deg}/-4.3{\deg}. It is neither very massive, eccentric nor orbiting a hot host star, and therefore does not share the properties of many other misaligned systems. [less ▲]

Detailed reference viewed: 12 (0 ULg)
Full Text
Peer Reviewed
See detailWASP-40b: Independent Discovery of the 0.6 M Transiting Exoplanet HAT-P-27b
Anderson, D. R.; Barros, S. C. C.; Boisse, I. et al

in Publications of the Astronomical Society of the Pacific [=PASP] (2011), 123

From WASP photometry and SOPHIE radial velocities we report the discovery of WASP-40b (HAT-P-27b), a 0.6 M planet that transits its 12th magnitude host star every 3.04 days. The host star is of late G ... [more ▼]

From WASP photometry and SOPHIE radial velocities we report the discovery of WASP-40b (HAT-P-27b), a 0.6 M planet that transits its 12th magnitude host star every 3.04 days. The host star is of late G-type or early K-type and likely has a metallicity greater than solar ([Fe/H]=0.14±0.11). The planet's mass and radius are typical of the known hot Jupiters, thus adding another system to the apparent pileup of transiting planets with periods near 3-4 days. Our parameters match those of the recent HATnet announcement of the same planet, thus giving confidence in the techniques used. We report a possible indication of stellar activity in the host star. [less ▲]

Detailed reference viewed: 12 (4 ULg)
Full Text
Peer Reviewed
See detailA short-period super-Earth orbiting the M2.5 dwarf GJ 3634. Detection with HARPS velocimetry and transit search with Spitzer photometry
Bonfils, X.; Gillon, Michaël ULg; Forveille, T. et al

in Astronomy and Astrophysics (2011), 528

We report on the detection of GJ 3634b, a super-Earth of mass m sin i = 7.0[SUB]-0.8[SUP]+0.9[/SUP]~M_⊕[/SUB] and period P = 2.64561 ± 0.00066 day. Its host star is a M2.5 dwarf, has a mass of 0.45 ± 0.05 ... [more ▼]

We report on the detection of GJ 3634b, a super-Earth of mass m sin i = 7.0[SUB]-0.8[SUP]+0.9[/SUP]~M_⊕[/SUB] and period P = 2.64561 ± 0.00066 day. Its host star is a M2.5 dwarf, has a mass of 0.45 ± 0.05 M[SUB]ȯ[/SUB], a radius of 0.43 ± 0.03 R[SUB]ȯ[/SUB] and lies 19.8 ± 0.6 pc away from our Sun. The planet is detected after a radial-velocity campaign using the ESO/Harps spectrograph. GJ 3634b had an a priori geometric probability to undergo transit of ~7% and, if telluric in composition, a non-grazing transit would produce a photometric dip of ≲0.1%. We therefore followed-up upon the RV detection with photometric observations using the 4.5-μm band of the IRAC imager onboard Spitzer. Our six-hour long light curve excludes that a transit occurs for 2σ of the probable transit window, decreasing the probability that GJ 3634b undergoes transit to ~0.5%. Based on observations made with the Harps instrument on the ESO 3.6-m telescope at La Silla Observatory under program IDs 082.C-0718(B) and183.C-0437(A), and observations made with Warm Spitzer under program 60027.Radial-velocity and photometric tables (Tables 2 and 3) are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/528/A111">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/528/A111</A> [less ▲]

Detailed reference viewed: 33 (0 ULg)