References of "Blavier, Jean-François"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailValidation of ACE-FTS v2.2 measurements of HCl, HF, CCl3F and CCl2F2 using space-, balloon- and ground-based instrument observations
Mahieu, Emmanuel ULg; Duchatelet, Pierre ULg; Demoulin, Philippe ULg et al

in Atmospheric Chemistry and Physics (2008), 8

Hydrogen chloride (HCl) and hydrogen fluoride (HF) are respectively the main chlorine and fluorine reservoirs in the Earth's stratosphere. Their buildup resulted from the intensive use of man-made ... [more ▼]

Hydrogen chloride (HCl) and hydrogen fluoride (HF) are respectively the main chlorine and fluorine reservoirs in the Earth's stratosphere. Their buildup resulted from the intensive use of man-made halogenated source gases, in particular CFC-11 (CCl3F) and CFC-12 (CCl2F2), during the second half of the 20th century. It is important to continue monitoring the evolution of these source gases and reservoirs, in support of the Montreal Protocol and also indirectly of the Kyoto Protocol. The Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) is a space-based instrument that has been performing regular solar occultation measurements of over 30 atmospheric gases since early 2004. In this validation paper, the HCl, HF, CFC-11 and CFC-12 version 2.2 profile data products retrieved from ACE-FTS measurements are evaluated. Volume mixing ratio profiles have been compared to observations made from space by MLS and HALOE, and from stratospheric balloons by SPIRALE, FIRS-2 and Mark-IV. Partial columns derived from the ACE-FTS data were also compared to column measurements from ground-based Fourier transform instruments operated at 12 sites. ACE-FTS data recorded from March 2004 to August 2007 have been used for the comparisons. These data are representative of a variety of atmospheric and chemical situations, with sounded air masses extending from the winter vortex to summer sub-tropical conditions. Typically, the ACE-FTS products are available in the 10-50 km altitude range for HCl and HF, and in the 7-20 and 7-25 km ranges for CFC-11 and -12, respectively. For both reservoirs, comparison results indicate an agreement generally better than 5-10% above 20 km altitude, when accounting for the known offset affecting HALOE measurements of HCl and HF. Larger positive differences are however found for comparisons with single profiles from FIRS-2 and SPIRALE. For CFCs, the few coincident measurements available suggest that the differences probably remain within +/-20%. [less ▲]

Detailed reference viewed: 79 (31 ULg)
Full Text
Peer Reviewed
See detailLong-term trends of inorganic chlorine from ground-based infrared solar spectra: Past increases and evidence for stabilization
Rinsland, Curtis P.; Mahieu, Emmanuel ULg; Zander, Rodolphe ULg et al

in Journal of Geophysical Research (2003), 108(D8), 4252

Long-term time series of hydrogen chloride (HCl) and chlorine nitrate (ClONO2) total column abundances has been retrieved from high spectral resolution ground-based solar absorption spectra recorded with ... [more ▼]

Long-term time series of hydrogen chloride (HCl) and chlorine nitrate (ClONO2) total column abundances has been retrieved from high spectral resolution ground-based solar absorption spectra recorded with infrared Fourier transform spectrometers at nine NDSC (Network for the Detection of Stratospheric Change) sites in both Northern and Southern Hemispheres. The data sets span up to 24 years and most extend until the end of 2001. The time series of Cly (defined here as the sum of the HCl and ClONO2 columns) from the three locations with the longest time-span records show rapid increases until the early 1990s superimposed on marked day-to-day, seasonal and inter-annual variability. Subsequently, the buildup in Cly slows and reaches a broad plateau after 1996, also characterized by variability. A similar time evolution is also found in the total chlorine concentration at 55 km altitude derived from Halogen Occultation Experiment (HALOE) global observations since 1991. The stabilization of inorganic chlorine observed in both the total columns and at 55 km altitude indicates that the near-global 1993 organic chlorine (CCly) peak at the Earth’s surface has now propagated over a broad altitude range in the upper atmosphere, though the time lag is difficult to quantify precisely from the current data sets, due to variability. We compare the three longest measured time series with two-dimensional model calculations extending from 1977 to 2010, based on a halocarbon scenario that assumes past measured trends and a realistic extrapolation into the future. The model predicts broad Cly maxima consistent with the long-term observations, followed by a slow Cly decline reaching 12–14% relative to the peak by 2010. The data reported here confirm the effectiveness of the Montreal Protocol and its Amendments and Adjustments in progressively phasing out the major man-related perturbations of the stratospheric ozone layer, in particular, the anthropogenic chlorine-bearing source gases. [less ▲]

Detailed reference viewed: 27 (11 ULg)
Full Text
Peer Reviewed
See detailThe rotational analysis of the B2Σ+-X2Πr transition of 74Ge35Cl
Mahieu, Emmanuel ULg; DUBOIS, Iwan; BREDOHL, Harald et al

in Journal of Molecular Spectroscopy (1990), 143(1), 91-99

A complete rotational analysis of six bands of GeCl is given. It concerns the B2Σ+-X2Πr transition of the most abundant isotopic species, 74Ge35Cl.

Detailed reference viewed: 3 (1 ULg)