References of "Beukelaers, Pierre"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailCycling or not cycling: cell cycle regulatory molecules and adult neurogenesis.
Beukelaers, Pierre ULg; Vandenbosch, Renaud ULg; Caron, Nicolas ULg et al

in Cellular and Molecular Life Sciences : CMLS (2012), 69(9), 1493-1503

The adult brain most probably reaches its highest degree of plasticity with the lifelong generation and integration of new neurons in the hippocampus and olfactory system. Neural precursor cells (NPCs ... [more ▼]

The adult brain most probably reaches its highest degree of plasticity with the lifelong generation and integration of new neurons in the hippocampus and olfactory system. Neural precursor cells (NPCs) residing both in the subgranular zone of the dentate gyrus and in the subventricular zone of the lateral ventricles continuously generate neurons that populate the dentate gyrus and the olfactory bulb, respectively. The regulation of NPC proliferation in the adult brain has been widely investigated in the past few years. Yet, the intrinsic cell cycle machinery underlying NPC proliferation remains largely unexplored. In this review, we discuss the cell cycle components that are involved in the regulation of NPC proliferation in both neurogenic areas of the adult brain. [less ▲]

Detailed reference viewed: 51 (21 ULg)
Full Text
Peer Reviewed
See detailAdult neurogenesis and the diseased brain.
Vandenbosch, Renaud ULg; Borgs, Laurence ULg; Beukelaers, Pierre ULg et al

in Current Medicinal Chemistry (2009), 16(6), 652-66

For a long time it was believed that the adult mammalian brain was completely unable to regenerate after insults. However, recent advances in the field of stem cell biology, including the identification ... [more ▼]

For a long time it was believed that the adult mammalian brain was completely unable to regenerate after insults. However, recent advances in the field of stem cell biology, including the identification of adult neural stem cells (NSCs) and evidence regarding a continuous production of neurons throughout life in the dentate gyrus (DG) and the subventricular zone of the lateral ventricles (SVZ), have provided new hopes for the development of novel therapeutic strategies to induce regeneration in the damaged brain. Moreover, proofs have accumulated this last decade that endogenous stem/progenitor cells of the adult brain have an intrinsic capacity to respond to brain disorders. Here, we first briefly summarize our current knowledge related to adult neurogenesis before focusing on the behaviour of adult neural stem/progenitors cells following stroke and seizure, and describe some of the molecular cues involved in the response of these cells to injury. In the second part, we outline the consequences of three main neurodegenerative disorders on adult neurogenesis and we discuss the potential therapeutic implication of adult neural stem/progenitors cells during the course of these diseases. [less ▲]

Detailed reference viewed: 55 (15 ULg)
Full Text
Peer Reviewed
See detailCell "circadian" cycle: new role for mammalian core clock genes.
Borgs, Laurence ULg; Beukelaers, Pierre ULg; Vandenbosch, Renaud ULg et al

in Cell Cycle (Georgetown, Tex.) (2009), 8(6), 832-7

In mammals, 24 hours rhythms are organized as a biochemical network of molecular clocks that are operative in all tissues, with the master clock residing in the hypothalamic suprachiasmatic nucleus (SCN ... [more ▼]

In mammals, 24 hours rhythms are organized as a biochemical network of molecular clocks that are operative in all tissues, with the master clock residing in the hypothalamic suprachiasmatic nucleus (SCN). The core pacemakers of these clocks consist of auto-regulatory transcriptional/post-transcriptional feedback loops. Several lines of evidence suggest the existence of a crosstalk between molecules that are responsible for the generation of circadian rhythms and molecules that control the cell cycle progression. In addition, highly specialized cell cycle checkpoints involved in DNA repair after damage seem also, at least in part, mediated by clock proteins. Recent studies have also highlighted a putative connection between clock protein dysfunction and cancer progression. This review discusses the intimate relation that exists between cell cycle progression and components of the circadian machinery. [less ▲]

Detailed reference viewed: 57 (13 ULg)
Full Text
Peer Reviewed
See detailPeriod 2 regulates neural stem/progenitor cell proliferation in the adult hippocampus.
Borgs, Laurence ULg; Beukelaers, Pierre ULg; Vandenbosch, Renaud ULg et al

in BMC Neuroscience (2009), 10

BACKGROUND: Newborn granule neurons are generated from proliferating neural stem/progenitor cells and integrated into mature synaptic networks in the adult dentate gyrus of the hippocampus. Since light ... [more ▼]

BACKGROUND: Newborn granule neurons are generated from proliferating neural stem/progenitor cells and integrated into mature synaptic networks in the adult dentate gyrus of the hippocampus. Since light/dark variations of the mitotic index and DNA synthesis occur in many tissues, we wanted to unravel the role of the clock-controlled Period2 gene (mPer2) in timing cell cycle kinetics and neurogenesis in the adult DG. RESULTS: In contrast to the suprachiasmatic nucleus, we observed a non-rhythmic constitutive expression of mPER2 in the dentate gyrus. We provide evidence that mPER2 is expressed in proliferating neural stem/progenitor cells (NPCs) and persists in early post-mitotic and mature newborn neurons from the adult DG. In vitro and in vivo analysis of a mouse line mutant in the mPer2 gene (Per2Brdm1), revealed a higher density of dividing NPCs together with an increased number of immature newborn neurons populating the DG. However, we showed that the lack of mPer2 does not change the total amount of mature adult-generated hippocampal neurons, because of a compensatory increase in neuronal cell death. CONCLUSION: Taken together, these data demonstrated a functional link between the constitutive expression of mPER2 and the intrinsic control of neural stem/progenitor cells proliferation, cell death and neurogenesis in the dentate gyrus of adult mice. [less ▲]

Detailed reference viewed: 43 (11 ULg)
Full Text
Peer Reviewed
See detailCdk2 Is Dispensable for Adult Hippocampal Neurogenesis
Vandenbosch, Renaud ULg; Borgs, Laurence ULg; Beukelaers, Pierre ULg et al

in Cell Cycle (Georgetown, Tex.) (2007), 6(24), 3065-9

Granule neurons of the dentate gyrus (DG) of the hippocampus undergo continuous renewal throughout life. Among cell cycle regulators, cyclin-dependent kinase 2 (Cdk2) is considered as a major regulator of ... [more ▼]

Granule neurons of the dentate gyrus (DG) of the hippocampus undergo continuous renewal throughout life. Among cell cycle regulators, cyclin-dependent kinase 2 (Cdk2) is considered as a major regulator of S-phase entry. We used Cdk2-deficient mice to decipher the requirement of Cdk2 for the generation of new neurons in the adult hippocampus. The quantification of cell cycle markers first revealed that the lack of Cdk2 activity does not influence spontaneous or seizure-induced proliferation of neural progenitor cells (NPC) in the adult DG. Using bromodeoxyuridine incorporation assays, we showed that the number of mature newborn granule neurons generated de novo was similar in both wild-type (WT) and Cdk2-deficient adult mice. Moreover, the apparent lack of cell output reduction in Cdk2(-/-) mice DG did not result from a reduction in apoptosis of newborn granule cells as analyzed by TUNEL assays. Our results therefore suggest that Cdk2 is dispensable for NPC proliferation, differentiation and survival of adult-born DG granule neurons in vivo. These data emphasize that functional redundancies between Cdks also occur in the adult brain at the level of neural progenitor cell cycle regulation during hippocampal neurogenesis. [less ▲]

Detailed reference viewed: 105 (18 ULg)
Full Text
Peer Reviewed
See detailThe Yin and Yang of cell cycle progression and differentiation in the oligodendroglial lineage
Nguyen, Laurent ULg; Borgs, Laurence ULg; Vandenbosch, Renaud ULg et al

in Mental Retardation & Developmental Disabilities Research Reviews (2006), 12(2), 85-96

In white matter disorders such as leukodystrophies (LD), periventricular leucomalacia (PVL), or multiple sclerosis (MS), the hypomyelination or the remyelination failure by oligodendrocyte progenitor ... [more ▼]

In white matter disorders such as leukodystrophies (LD), periventricular leucomalacia (PVL), or multiple sclerosis (MS), the hypomyelination or the remyelination failure by oligodendrocyte progenitor cells involves errors in the sequence of events that normally occur during development when progenitors proliferate, migrate through the white matter, contact the axon, and differentiate into myelin-forming oligodendrocytes. Multiple mechanisms underlie the eventual progressive deterioration that typifies the natural history of developmental demyelination in LID and PVL and of adult-onset demyelination in MS. Over the past few years, pathophysiological studies have mostly focused on seeking abnormalities that impede oligodendroglial maturation at the level of migration, myelination, and survival. In contrast, there has been a strikingly lower interest for early proliferative and differentiation events that are likely to be equally critical for white matter development and myelin repair. This review highlights the Yin and Yang principles of interactions between intrinsic factors that coordinately regulate progenitor cell division and the onset of differentiation, i.e. the initial steps of oligodendrocyte lineage progression that are obviously crucial in health and diseases. (C) 2006 Wiley-Liss, Inc. [less ▲]

Detailed reference viewed: 58 (4 ULg)