References of "Berger, J.-P"
     in
Bookmark and Share    
Full Text
See detailThe VLTi/PIONIER survey of southern TTauri disks
Anthonioz, F.; Ménard, F.; Pinte, C. et al

in Booth, Mark; Matthews, Brenda; Graham, James (Eds.) Exploring the Formation and Evolution of Planetary Systems (2014, January 01)

Studying the inner regions of protoplanetary disks (1-10 AU) is of importance to understand the formation of planets and the accretion process feeding the forming central star. Herbig AeBe stars are ... [more ▼]

Studying the inner regions of protoplanetary disks (1-10 AU) is of importance to understand the formation of planets and the accretion process feeding the forming central star. Herbig AeBe stars are bright enough to be routinely observed by Near IR interferometers. The data for the fainter T Tauri stars is much more sparse. In this contribution we present the results of our ongoing survey at the VLTI. We used the PIONIER combiner that allows the simultaneous use of 4 telescopes, yielding 6 baselines and 3 independent closure phases at once. PIONIER's integrated optics technology makes it a sensitive instrument. We have observed 22 T Tauri stars so far, the largest survey for T Tauri stars to this date. Our results demonstrate the very significant contribution of an extended component to the interferometric signal. The extended component is different from source to source and the data, with several baselines, offer a way to improve our knowledge of the disk geometry and/or composition. These results validate an earlier study by Pinte et al. 2008 and show that the dust inner radii of T Tauri disks now appear to be in better agreement with the expected position of the dust sublimation radius, contrary to previous claims. [less ▲]

Detailed reference viewed: 7 (0 ULg)
Full Text
Peer Reviewed
See detailHot circumstellar material resolved around β Pic with VLTI/PIONIER
Defrère, D.; Lebreton, J.; Le Bouquin, J.-B. et al

in Astronomy and Astrophysics (2012), 546

Aims: We aim at resolving the circumstellar environment around β Pic in the near-infrared in order to study the inner planetary system (<200 mas, i.e., ~4 AU). Methods: Precise interferometric fringe ... [more ▼]

Aims: We aim at resolving the circumstellar environment around β Pic in the near-infrared in order to study the inner planetary system (<200 mas, i.e., ~4 AU). Methods: Precise interferometric fringe visibility measurements were obtained over seven spectral channels dispersed across the H band with the four-telescope VLTI/PIONIER interferometer. Thorough analysis of interferometric data was performed to measure the stellar angular diameter and to search for circumstellar material. Results: We detected near-infrared circumstellar emission around β Pic that accounts for 1.37% ± 0.16% of the near-infrared stellar flux and that is located within the field-of-view of PIONIER (i.e., ~200 mas in radius). The flux ratio between this excess and the photosphere emission is shown to be stable over a period of 1 year and to vary only weakly across the H band, suggesting that the source is either very hot (≳1500 K) or dominated by the scattering of the stellar flux. In addition, we derive the limb-darkened angular diameter of β Pic with an unprecedented accuracy (θLD= 0.736 ± 0.019 mas). Conclusions: The presence of a small H-band excess originating in the vicinity of β Pic is revealed for the first time thanks to the high-precision visibilities enabled by VLTI/PIONIER. This excess emission is likely due to the scattering of stellar light by circumstellar dust and/or the thermal emission from a yet unknown population of hot dust, although hot gas emitting in the continuum cannot be firmly excluded. [less ▲]

Detailed reference viewed: 12 (2 ULg)
Full Text
Peer Reviewed
See detailPIONIER: a 4-telescope visitor instrument at VLTI
Le Bouquin, J.-B.; Berger, J.-P.; Lazareff, B. et al

in Astronomy and Astrophysics (2011), 535

Context. PIONIER stands for Precision Integrated-Optics Near-infrared Imaging ExpeRiment. It combines four 1.8m Auxilliary Telescopes or four 8m Unit Telescopes of the Very Large Telescope Interferometer ... [more ▼]

Context. PIONIER stands for Precision Integrated-Optics Near-infrared Imaging ExpeRiment. It combines four 1.8m Auxilliary Telescopes or four 8m Unit Telescopes of the Very Large Telescope Interferometer (ESO, Chile) using an integrated optics combiner. The instrument was integrated at IPAG in December 2009 and commissioned at the Paranal Observatory in October 2010. It has provided scientific observations since November 2010. <BR /> Aims: In this paper, we explain the instrumental concept and describe the standard operational modes and the data reduction strategy. We present the typical performance and discuss how to improve them. <BR /> Methods: This paper is based on laboratory data obtained during the integrations at IPAG, as well as on-sky data gathered during the commissioning at VLTI. We illustrate the imaging capability of PIONIER on the binaries δ Sco and HIP11231. <BR /> Results: PIONIER provides six visibilities and three independent closure phases in the H band, either in a broadband mode or with a low spectral dispersion (R = 40), using natural light (i.e. unpolarized). The limiting magnitude is Hmag = 7 in dispersed mode under median atmospheric conditions (seeing < 1, τ[SUB]0[/SUB] > 3ms) with the 1.8m Auxiliary Telescopes. We demonstrate a precision of 0.5deg on the closure phases. The precision on the calibrated visibilities ranges from 3% to 15% depending on the atmospheric conditions. <BR /> Conclusions: PIONIER was installed and successfully tested as a visitor instrument for the VLTI. It permits high angular resolution imaging studies at an unprecedented level of sensitivity. The successful combination of the four 8m Unit Telescopes in March 2011 demonstrates that VLTI is ready for four-telescope operation. Based on observations collected at the European Southern Observatory, Paranal, Chile (commissioning data and 087.C-0709). [less ▲]

Detailed reference viewed: 20 (0 ULg)
Full Text
Peer Reviewed
See detailSearching for faint companions with VLTI/PIONIER. I. Method and first results
Absil, Olivier ULg; Le Bouquin, J.-B.; Berger, J.-P. et al

in Astronomy and Astrophysics (2011), 535

Context. A new four-telescope interferometric instrument called PIONIER has recently been installed at VLTI. It provides improved imaging capabilities together with high precision. <BR /> Aims: We search ... [more ▼]

Context. A new four-telescope interferometric instrument called PIONIER has recently been installed at VLTI. It provides improved imaging capabilities together with high precision. <BR /> Aims: We search for low-mass companions around a few bright stars using different strategies, and determine the dynamic range currently reachable with PIONIER. <BR /> Methods: Our method is based on the closure phase, which is the most robust interferometric quantity when searching for faint companions. We computed the χ[SUP]2[/SUP] goodness of fit for a series of binary star models at different positions and with various flux ratios. The resulting χ[SUP]2[/SUP] cube was used to identify the best-fit binary model and evaluate its significance, or to determine upper limits on the companion flux in case of non-detections. <BR /> Results: No companion is found around <ASTROBJ>Fomalhaut</ASTROBJ>, <ASTROBJ>tau Cet</ASTROBJ> and <ASTROBJ>Regulus</ASTROBJ>. The median upper limits at 3σ on the companion flux ratio are respectively of 2.3 × 10[SUP]-3[/SUP] (in 4 h), 3.5 × 10[SUP]-3[/SUP] (in 3 h) and 5.4 × 10[SUP]-3[/SUP] (in 1.5 h) on the search region extending from 5 to 100 mas. Our observations confirm that the previously detected near-infrared excess emissions around Fomalhaut and tau Cet are not related to a low-mass companion, and instead come from an extended source such as an exozodiacal disk. In the case of <ASTROBJ>del Aqr</ASTROBJ>, in 30 min of observation, we obtain the first direct detection of a previously known companion, at an angular distance of about 40 mas and with a flux ratio of 2.05 × 10[SUP]-2[/SUP] ± 0.16 × 10[SUP]-2[/SUP]. Due to the limited u,v plane coverage, its position can, however, not be unambiguously determined. <BR /> Conclusions: After only a few months of operation, PIONIER has already achieved one of the best dynamic ranges world-wide for multi-aperture interferometers. A dynamic range up to about 1:500 is demonstrated on unresolved targets, but significant improvements are still required to reach the ultimate goal of directly detecting hot giant extrasolar planets. Based on observations obtained at the European Southern Observatory (ESO) Very Large Telescope Interferometer (VLTI), Paranal, Chile. [less ▲]

Detailed reference viewed: 31 (3 ULg)
Full Text
Peer Reviewed
See detailHot exozodiacal dust resolved around Vega with IOTA/IONIC
Defrère, D.; Absil, Olivier ULg; Augereau, J.-C. et al

in Astronomy and Astrophysics (2011), 534

Context. Although debris discs have been detected around a significant number of main-sequence stars, only a few of them are known to harbour hot dust in their inner part where terrestrial planets may ... [more ▼]

Context. Although debris discs have been detected around a significant number of main-sequence stars, only a few of them are known to harbour hot dust in their inner part where terrestrial planets may have formed. Thanks to infrared interferometric observations, it is possible to obtain a direct measurement of these regions, which are of prime importance for preparing future exo-Earth characterisation missions. <BR /> Aims: We resolve the exozodiacal dust disc around Vega with the help of infrared stellar interferometry and estimate the integrated H-band flux originating from the first few AUs of the debris disc. <BR /> Methods: Precise H-band interferometric measurements were obtained on Vega with the 3-telescope IOTA/IONIC interferometer (Mount Hopkins, Arizona). Thorough modelling of both interferometric data (squared visibility and closure phase) and spectral energy distribution was performed to constrain the nature of the near-infrared excess emission. <BR /> Results: Resolved circumstellar emission within ~6 AU from Vega is identified at the 3-σ level. The most straightforward scenario consists in a compact dust disc producing a thermal emission that is largely dominated by small grains located between 0.1 and 0.3 AU from Vega and accounting for 1.23 ± 0.45% of the near-infrared stellar flux for our best-fit model. This flux ratio is shown to vary slightly with the geometry of the model used to fit our interferometric data (variations within ± 0.19%). <BR /> Conclusions: The presence of hot exozodiacal dust in the vicinity of Vega, initially revealed by K-band CHARA/FLUOR observations, is confirmed by our H-band IOTA/IONIC measurements. Whereas the origin of the dust is still uncertain, its presence and the possible connection with the outer disc suggest that the Vega system is currently undergoing major dynamical perturbations. [less ▲]

Detailed reference viewed: 18 (0 ULg)
Full Text
Peer Reviewed
See detailThe Non-thermal Radio Emitter HD 93250 Resolved by Long Baseline Interferometry
Sana, H.; Le Bouquin, J.-B.; De Becker, Michaël ULg et al

in Astrophysical Journal Letters (2011), 740

As the brightest O-type X-ray source in the Carina nebula, HD 93250 (O4 III(fc)) is X-ray overluminous for its spectral type and has an unusually hard X-ray spectrum. Two different scenarios have been ... [more ▼]

As the brightest O-type X-ray source in the Carina nebula, HD 93250 (O4 III(fc)) is X-ray overluminous for its spectral type and has an unusually hard X-ray spectrum. Two different scenarios have been invoked to explain its X-ray properties: wind-wind interaction and magnetic wind confinement. Yet, HD 93250 shows absolutely constant radial velocities over timescales of years suggesting either a single star, a binary system seen pole-on view or a very long period, and/or highly eccentric system. Using the ESO Very Large Telescope Interferometer, we resolved HD 93250 as a close pair with similar components. We measured a near-infrared flux ratio of 0.8 ± 0.1 and a separation of (1.5 ± 0.2) × 10-3 arcsec. At the distance of Carina, this corresponds to a projected physical distance of 3.5 AU. While a quantitative investigation would require a full characterization of the orbit, the binary nature of HD 93250 allows us to qualitatively explain both its X-ray flux and hardness and its non-thermal radio emission in the framework of a colliding wind scenario. We also discuss various observational biases. We show that, due to line blending of two similar spectral components, HD 93250 could have a period as short as 1 to several years despite the lack of measurable radial velocity variations. [less ▲]

Detailed reference viewed: 11 (1 ULg)
Full Text
Peer Reviewed
See detailOptimized fringe sensors for the VLTI next generation instruments
Blind, N.; Absil, Olivier ULg; Le Bouquin, J.-B. et al

in Astronomy and Astrophysics (2011), 530

Context. With the arrival of the next generation of ground-based imaging interferometers combining from four to possibly six telescopes simultaneously, there is also a strong need for a new generation of ... [more ▼]

Context. With the arrival of the next generation of ground-based imaging interferometers combining from four to possibly six telescopes simultaneously, there is also a strong need for a new generation of fringe trackers able to cophase these arrays. These instruments have to be very sensitive and to provide robust operations in quickly varying observational conditions. <BR /> Aims: We aim at defining the optimal characteristics of fringe sensor concepts operating with four or six telescopes. The current detector limitations lead us to consider solutions based on co-axial pairwise combination schemes. <BR /> Methods: We independently study several aspects of the fringe sensing process: 1) how to measure the phase and the group delay, and 2) how to combine the telescopes to ensure a precise and robust fringe tracking in real conditions. Thanks to analytical developments and numerical simulations, we define the optimal fringe-sensor concepts and compute the expected performance of the four-telescope one with our dedicated end-to-end simulation tool sim2GFT. <BR /> Results: We first show that measuring the phase and the group delay by obtaining the data in several steps (i.e. by temporally modulating the optical path difference) is extremely sensitive to atmospheric turbulence and therefore conclude that it is better to obtain the fringe position with a set of data obtained simultaneously. Subsequently, we show that among all co-axial pairwise schemes, moderately redundant concepts increase the sensitivity as well as the robustness in various atmospheric or observing conditions. Merging all these results, end-to-end simulations show that our four-telescope fringe sensor concept is able to track fringes at least 90% of the time up to limiting magnitudes of 7.5 and 9.5 for the 1.8- and 8.2-meter VLTI telescopes respectively. [less ▲]

Detailed reference viewed: 12 (1 ULg)
Full Text
Peer Reviewed
See detailPEGASE, an infrared interferometer to study stellar environments and low mass companions around nearby stars
Ollivier, M.; Absil, Olivier ULg; Allard, F. et al

in Experimental Astronomy (2009), 23

PEGASE is a mission dedicated to the exploration of the environment (including habitable zone) of young and solar-type stars (particularly those in the DARWIN catalogue) and the observation of low mass ... [more ▼]

PEGASE is a mission dedicated to the exploration of the environment (including habitable zone) of young and solar-type stars (particularly those in the DARWIN catalogue) and the observation of low mass companions around nearby stars. It is a space interferometer project composed of three free flying spacecraft, respectively featuring two 40 cm siderostats and a beam combiner working in the visible and near infrared. It has been proposed to ESA as an answer to the first ``Cosmic Vision'' call for proposals, as an M mission. The concept also enables full-scale demonstration of space nulling interferometry operation for DARWIN. [less ▲]

Detailed reference viewed: 66 (9 ULg)
Full Text
See detailMilli-arcsecond Astrophysics with VSI, the VLTI Spectro-imager in the ELT Era
Malbet, F.; Buscher, D.; Weigelt, G. et al

in Moorwood, Alan (Ed.) Science with the VLT in the ELT Era (2009)

Nowadays, compact sources relatively warm like surfaces of nearby stars, circumstellar environments of stars from early stages to the most evolved ones and surroundings of active galactic nuclei can be ... [more ▼]

Nowadays, compact sources relatively warm like surfaces of nearby stars, circumstellar environments of stars from early stages to the most evolved ones and surroundings of active galactic nuclei can be investigated at milli-arcsecond scales only with the VLT in its interferometric mode. We propose a spectro-imager, named VSI (VLTI spectro-imager), which is capable to probe these sources both over spatial and spectral scales in the near-infrared domain. This instrument will provide information complementary to what is obtained at the same time with ALMA at different wavelengths and the extreme large telescopes. [less ▲]

Detailed reference viewed: 56 (12 ULg)
Full Text
See detailVSI: the VLTI spectro-imager
Malbet, F.; Buscher, D.; Weigelt, G. et al

in Schöller, Markus; Danchi, William; Delplancke, Françoise (Eds.) Optical and Infrared Interferometry (2008, July 01)

The VLTI Spectro Imager (VSI) was proposed as a second-generation instrument of the Very Large Telescope Interferometer providing the ESO community with spectrally-resolved, near-infrared images at ... [more ▼]

The VLTI Spectro Imager (VSI) was proposed as a second-generation instrument of the Very Large Telescope Interferometer providing the ESO community with spectrally-resolved, near-infrared images at angular resolutions down to 1.1 milliarcsecond and spectral resolutions up to R = 12000. Targets as faint as K = 13 will be imaged without requiring a brighter nearby reference object; fainter targets can be accessed if a suitable reference is available. The unique combination of high-dynamic-range imaging at high angular resolution and high spectral resolution enables a scientific program which serves a broad user community and at the same time provides the opportunity for breakthroughs in many areas of astrophysics. The high level specifications of the instrument are derived from a detailed science case based on the capability to obtain, for the first time, milliarcsecond-resolution images of a wide range of targets including: probing the initial conditions for planet formation in the AU-scale environments of young stars; imaging convective cells and other phenomena on the surfaces of stars; mapping the chemical and physical environments of evolved stars, stellar remnants, and stellar winds; and disentangling the central regions of active galactic nuclei and supermassive black holes. VSI will provide these new capabilities using technologies which have been extensively tested in the past and VSI requires little in terms of new infrastructure on the VLTI. At the same time, VSI will be able to make maximum use of new infrastructure as it becomes available; for example, by combining 4, 6 and eventually 8 telescopes, enabling rapid imaging through the measurement of up to 28 visibilities in every wavelength channel within a few minutes. The current studies are focused on a 4-telescope version with an upgrade to a 6-telescope one. The instrument contains its own fringe tracker and tip-tilt control in order to reduce the constraints on the VLTI infrastructure and maximize the scientific return. [less ▲]

Detailed reference viewed: 66 (7 ULg)
Full Text
See detailSystem overview of the VLTI Spectro-Imager
Jocou, L.; Berger, J.-P.; Malbet, F. et al

in Schöller, Markus; Danchi, William; Delplancke, Françoise (Eds.) Optical and Infrared Interferometry (2008, July 01)

The VLTI Spectro Imager project aims to perform imaging with a temporal resolution of 1 night and with a maximum angular resolution of 1 milliarcsecond, making best use of the Very Large Telescope ... [more ▼]

The VLTI Spectro Imager project aims to perform imaging with a temporal resolution of 1 night and with a maximum angular resolution of 1 milliarcsecond, making best use of the Very Large Telescope Interferometer capabilities. To fulfill the scientific goals (see Garcia et. al.), the system requirements are: a) combining 4 to 6 beams; b) working in spectral bands J, H and K; c) spectral resolution from R= 100 to 12000; and d) internal fringe tracking on-axis, or off-axis when associated to the PRIMA dual-beam facility. The concept of VSI consists on 6 sub-systems: a common path distributing the light between the fringe tracker and the scientific instrument, the fringe tracker ensuring the co-phasing of the array, the scientific instrument delivering the interferometric observables and a calibration tool providing sources for internal alignment and interferometric calibrations. The two remaining sub-systems are the control system and the observation support software dedicated to the reduction of the interferometric data. This paper presents the global concept of VSI science path including the common path, the scientific instrument and the calibration tool. The scientific combination using a set of integrated optics multi-way beam combiners to provide high-stability visibility and closure phase measurements are also described. Finally we will address the performance budget of the global VSI instrument. The fringe tracker and scientific spectrograph will be shortly described. [less ▲]

Detailed reference viewed: 6 (0 ULg)
Full Text
See detailProspects for near-infrared characterisation of hot Jupiters with the VLTI Spectro-Imager (VSI)
Renard, Stéphanie; Absil, Olivier ULg; Berger, J.-P. et al

in Schöller, Markus; Danchi, William; Delplancke, Françoise (Eds.) Optical and Infrared Interferometry (2008, July 01)

In this paper, we study the feasibility of obtaining near-infrared spectra of bright extrasolar planets with the 2nd generation VLTI Spectro-Imager instrument (VSI), which has the required angular ... [more ▼]

In this paper, we study the feasibility of obtaining near-infrared spectra of bright extrasolar planets with the 2nd generation VLTI Spectro-Imager instrument (VSI), which has the required angular resolution to resolve nearby hot Extrasolar Giant Planets (EGPs) from their host stars. Taking into account fundamental noises, we simulate closure phase measurements of several extrasolar systems using four 8-m telescopes at the VLT and a low spectral resolution (R = 100). Synthetic planetary spectra from T. Barman are used as an input. Standard chi[SUP]2[/SUP]-fitting methods are then used to reconstruct planetary spectra from the simulated data. These simulations show that low-resolution spectra in the H and K bands can be retrieved with a good fidelity for half a dozen targets in a reasonable observing time (about 10 hours, spread over a few nights). Such observations would strongly constrain the planetary temperature and albedo, the energy redistribution mechanisms, as well as the chemical composition of their atmospheres. Systematic errors, not included in our simulations, could be a serious limitation to these performance estimations. The use of integrated optics is however expected to provide the required instrumental stability (around 10[SUP]-4[/SUP] on the closure phase) to enable the first thorough characterisation of extrasolar planetary emission spectra in the near-infrared. [less ▲]

Detailed reference viewed: 12 (0 ULg)
Full Text
See detailA Numerical Simulator for VITRUV
Lebouquin, J.-B.; Herwats, Emilie ULg; Carvalho, M.-I. et al

in Richichi, A.; Delplancke, F.; Paresce, F. (Eds.) et al The Power of Optical/IR Interferometry: Recent Scientific Results and 2nd Generation Instrumentation (2008)

VITRUVsim is a numerical tool with as much as possible physics included. Inputs are the source parameters (flux, morphology, position...) and outputs are sequences of observed fringes and/or reduced ... [more ▼]

VITRUVsim is a numerical tool with as much as possible physics included. Inputs are the source parameters (flux, morphology, position...) and outputs are sequences of observed fringes and/or reduced visibilities. VITRUVsim is written in a portable and free language. [less ▲]

Detailed reference viewed: 4 (0 ULg)
Full Text
Peer Reviewed
See detailVSI: a milli-arcsec spectro-imager for the VLTI
Malbet, F.; Kern, P. Y.; Berger, J.-P. et al

in Monnier, John D; Schöller, Markus; Danchi, William C (Eds.) Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series "Advances in Stellar Interferometry" - SPIE Conference 6268 (2006, July)

VLTi Spectro-Imager (VSI) is a proposition for a second generation VLTI instrument which is aimed at providing the ESO community with the capability of performing image synthesis at milli-arcsecond ... [more ▼]

VLTi Spectro-Imager (VSI) is a proposition for a second generation VLTI instrument which is aimed at providing the ESO community with the capability of performing image synthesis at milli-arcsecond angular resolution. VSI provides the VLTI with an instrument able to combine 4 telescopes in a baseline version and optionally up to 6 telescopes in the near-infrared spectral domain with moderate to high spectral resolution. The instrument contains its own fringe tracker in order to relax the constraints onto the VLTI infrastructure. VSI will do imaging at the milli-arcsecond scale with spectral resolution of: a) the close environments of young stars probing the initial conditions for planet formation; b) the surfaces of stars; c) the environment of evolved stars, stellar remnants and stellar winds, and d) the central region of active galactic nuclei and supermassive black holes. The science cases allowed us to specify the astrophysical requirements of the instrument and to define the necessary studies of the science group for phase A. [less ▲]

Detailed reference viewed: 30 (6 ULg)