References of "Benoit, Valérie"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailTranscriptional activation of cyclooxygenase-2 by tumor suppressor p53 requires nuclear factor-kappaB
Benoit, Valérie; de Moraes, E.; Dar, N. A. et al

in Oncogene (2006), 25(42), 5708-5718

Overexpression of cyclooxygenase-2 (Cox-2) is thought to exert antiapoptotic effects in cancer. Here we show that the tumor suppressor p53 upregulated Cox-2 in esophageal and colon cancer cell lines by ... [more ▼]

Overexpression of cyclooxygenase-2 (Cox-2) is thought to exert antiapoptotic effects in cancer. Here we show that the tumor suppressor p53 upregulated Cox-2 in esophageal and colon cancer cell lines by inducing the binding of nuclear factor-kappaB (NF-kappaB) to its response element in the COX-2 promoter. Inhibition of NF-kappaB prevented p53 induction of Cox-2 expression. Cooperation between p53 and NF-kappaB was required for activation of COX-2 promoter in response to daunomycin, a DNA-damaging agent. Pharmacological inhibition of Cox-2 enhanced apoptosis in response to daunomycin, in particular in cells containing active p53. In esophageal cancer, there was a correlation between Cox-2 expression and wild-type TP53 in Barrett's esophagus (BE) and in adenocarcinoma, but not in squamous cell carcinoma (P < 0.01). These results suggest that p53 and NF-kappaB cooperate in upregulating Cox-2 expression, promoting cell survival in inflammatory precursor lesions such as BE. [less ▲]

Detailed reference viewed: 30 (6 ULg)
Full Text
Peer Reviewed
See detailEvaluation of original dual thromboxane A2 modulators as antiangiogenic agents
de Leval, Xavier; Dassesse, Thibaut; Dogné, Jean-Michel ULg et al

in Journal of Pharmacology and Experimental Therapeutics (The) (2006), 318(3), 1057-1067

Angiogenesis is a promising target for the therapy of several diseases including cancer. This study was undertaken to characterize the antiangiogenic properties of a series of original dual thromboxane A ... [more ▼]

Angiogenesis is a promising target for the therapy of several diseases including cancer. This study was undertaken to characterize the antiangiogenic properties of a series of original dual thromboxane A(2) (TXA(2)) inhibitors derived from torasemide, a marketed loop diuretic with TXA(2) antagonistic properties, by evaluating their effects on human endothelial cell migration, adhesion, and viability in vitro, as well as in the ex vivo rat aortic ring assay. All drugs tested exhibited a marked affinity toward human platelet TXA(2) receptor, significantly prevented platelet aggregation induced by U-46,619, a stable TXA(2) receptor agonist, and inhibited platelet TXA(2) synthase without affecting cyclooxygenase (COX)-1 or COX-2 enzymatic activities. These dual TXA(2) inhibitors dose dependently inhibited endothelial cell migration in chemotaxis assays using vascular endothelial growth factor ( VEGF) as a chemoattractant but failed to affect cell adhesion and viability. The highest rates of cell migration inhibition were obtained with original compounds BM-567 and BM-573 (50.3 and 59.4% inhibition, respectively) when used at the final concentration of 10 mu M. In addition, pretreatment of endothelial cells with these two drugs significantly prevented U-46,619-induced intracellular Ca2+ pool mobilization, thus suggesting a mechanistic link between inhibition of the TXA(2) pathway and reduced endothelial cell migration. Treatment of rat aortic explants with U-46,619 (9,11- dideoxy- 9,11- methanoepoxyprostaglandin F 2) significantly enhanced vessel sprouting whereas aortic rings treated with some of the compounds, including BM-567 (N-n-pentyl-N'-[2-(cyclohexylamino)-5-nitrobenzenesulfonyl] urea) and BM-573 (N-tert-butyl-N'-[5-nitro-2p- toluylaminobenzenesulfonyl]urea), showed a significant decrease in vessel sprouting, which was not reversed by the addition of VEGF. These data suggest that our original dual TXA(2) inhibitors bear antiangiogenic properties, mainly by inhibiting endothelial cell migration. [less ▲]

Detailed reference viewed: 44 (12 ULg)
Full Text
Peer Reviewed
See detailPeroxisome proliferator-activated receptor-gamma1 is dephosphorylated and degraded during BAY 11-7085-induced synovial fibroblast apoptosis
Relic, Biserka ULg; Benoit, Valerie; Franchimont, Nathalie et al

in Journal of Biological Chemistry (2006), 281(32), 597-604

Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) plays a central role in whole body metabolism by regulating adipocyte differentiation and energy storage. Recently, however, PPAR-gamma has ... [more ▼]

Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) plays a central role in whole body metabolism by regulating adipocyte differentiation and energy storage. Recently, however, PPAR-gamma has also been demonstrated to affect proliferation, differentiation, and apoptosis of different cell types. As we have previously shown that BAY 11-7085-induced synovial fibroblast apoptosis is prevented by PPAR-gamma agonist 15d-PGJ2; the expression of PPAR-gamma in these cells was studied. Both PPAR-gamma1 and PPAR-gamma2 isoforms were cloned from synovial fibroblast RNA, but only PPAR-gamma1 was detected by Western blot, showing constitutive nuclear expression. Within minutes of BAY 11-7085 treatment, a PPAR-gamma1-specific band was shifted into a form of higher mobility, suggesting dephosphorylation, as confirmed by phosphatase treatment of cell extracts. Of interest, BAY 11-7085-induced PPAR-gamma1 dephosphorylation was followed by PARP and caspase-8 cleavage as well as by PPAR-gamma1 protein degradation. PPAR-gamma1 dephosphorylation was followed by the loss of PPAR-DNA binding activity ubiquitously present in synovial fibroblast nuclear extracts. Unlike the phosphorylated form, dephosphorylated PPAR-gamma1 was found in insoluble membrane cell fraction and was not ubiquitinated before degradation. PPAR-gamma1 dephosphorylation coincided with ERK1/2 phosphorylation that accompanies BAY 11-7085-induced synovial fibroblasts apoptosis. 15d-PGJ2, PGD2, and partially UO126, down-regulated ERK1/2 phosphorylation, protected cells from BAY 11-7085-induced apoptosis, and reversed both PPAR-gamma dephosphorylation and degradation. Furthermore, PPAR-gamma antagonist BADGE induced PPAR-gamma1 degradation, ERK1/2 phosphorylation, and synovial fibroblasts apoptosis. The results presented suggest an anti-apoptotic role for PPAR-gamma1 in synovial fibroblasts. Since apoptotic marker PARP is cleaved after PPAR-gamma1 dephosphorylation but before PPAR-gamma1 degradation, dephosphorylation event might be enough to mediate BAY 11-7085-induced apoptosis in synovial fibroblasts. [less ▲]

Detailed reference viewed: 10 (3 ULg)
Full Text
Peer Reviewed
See detailTNFa and IKKb-mediated TANK/I-TRAF phosphorylation: implications for interaction with NEMO/IKKg and NF-kB activation
Bonif, Marianne; Meuwis, Marie-Alice ULg; Close, Pierre ULg et al

in Biochemical Journal (2006), 394

Pro-inflammatory cytokines trigger signalling cascades leading to NF-kappaB (nuclear factor-kappaB)-dependent gene expression through IKK [IkappaB (inhibitory kappaB) kinase]-dependent phosphorylation and ... [more ▼]

Pro-inflammatory cytokines trigger signalling cascades leading to NF-kappaB (nuclear factor-kappaB)-dependent gene expression through IKK [IkappaB (inhibitory kappaB) kinase]-dependent phosphorylation and subsequent degradation of the IkappaB proteins and via induced phosphorylation of p65. These signalling pathways rely on sequentially activated kinases which are assembled by essential and non-enzymatic scaffold proteins into functional complexes. Here, we show that the pro-inflammatory cytokine TNFalpha (tumour necrosis factor alpha) promotes TANK [TRAF (TNF receptor-associated factor) family member associated NF-kappaB activator] recruitment to the IKK complex via a newly characterized C-terminal zinc finger. Moreover, we show that TANK is phosphorylated by IKKbeta upon TNFalpha stimulation and that this modification negatively regulates TANK binding to NEMO (NF-kappaB essential modulator). Interestingly, reduced TANK expression by RNA interference attenuates TNFalpha-mediated induction of a subset of NF-kappaB target genes through decreased p65 transactivation potential. Therefore the scaffold protein TANK is required for the cellular response to TNFalpha by connecting upstream signalling molecules to the IKKs and p65, and its subsequent IKKbeta-mediated phosphorylation may be a mechanism to terminate the TANK-dependent wave of NF-kappaB activation. [less ▲]

Detailed reference viewed: 70 (9 ULg)
Full Text
Peer Reviewed
See detailLow daunomycin concentrations protect colorectal cancer cells from hypoxia-induced apoptosis
Lechanteur, Chantal ULg; Jacobs, Nathalie ULg; Greimers, Roland ULg et al

in Oncogene (2005), 24(10), 1788-1793

Hypoxia, a common feature of solid tumors, is a direct stress that triggers apoptosis in many cell types. Poor or irregular tumor vascularization also leads to a decreased drug diffusion and cancer cells ... [more ▼]

Hypoxia, a common feature of solid tumors, is a direct stress that triggers apoptosis in many cell types. Poor or irregular tumor vascularization also leads to a decreased drug diffusion and cancer cells distant from blood vessels (hypoxic cells) are exposed to low drug concentrations. In this report, we show that low daunomycin concentrations protect HCT116 colorectal cancer cells from hypoxia-induced apoptosis. While hypoxia induced p53 accumulation without expression of its responsive genes (bax and p21), daunomycin treatment restored p53 transactivation activity and cell cycle progression. We also demonstrated a role for Akt activation in daunomycin-induced protection through phosphorylation and inactivation of the Bcl-2 family proapoptotic factor Bad. Our data therefore suggest that chemotherapy could possibly, because of low concentrations in poorly vascularized tumors, protect cancer cells from hypoxia-induced cytotoxicity. [less ▲]

Detailed reference viewed: 32 (11 ULg)
Full Text
Peer Reviewed
See detailRegulation of HER-2 oncogene expression by cyclooxygenase-2 and prostaglandin E2
Benoit, Valérie; Relic, Biserka ULg; de Leval, Laurence ULg et al

in Oncogene (2004), 23(8), 1631-1635

The oncoprotein HER-2/neu is a prosurvival factor and its overexpression has been correlated with adverse prognosis in breast cancers. High levels of the cyclooxygenase-2 (COX-2), a proinflammatory and ... [more ▼]

The oncoprotein HER-2/neu is a prosurvival factor and its overexpression has been correlated with adverse prognosis in breast cancers. High levels of the cyclooxygenase-2 (COX-2), a proinflammatory and antiapoptotic enzyme, were detected in HER-2-positive tumors and this observation was linked to an HER-2-mediated induction of COX-2 gene transcription. Here, we report that COX-2 expression, and synthesis of its major enzymatic product, PGE2, leads in turn to an enhanced HER-2 expression. Moreover, COX-2 enzymatic inhibition dramatically reduced HER-2 protein levels, efficiently increased the cancer cells sensitility to chemotherapeutic treatment and acted in synergy with HER-2 inhibitor, trastuzumab. Therefore, we propose an original model where HER-2 and COX-2 transcriptionally regulate each other in a positive loop. [less ▲]

Detailed reference viewed: 61 (7 ULg)
Full Text
Peer Reviewed
See detailCaspase-8-dependent HER-2 cleavage in response to tumor necrosis factor alpha stimulation is counteracted by nuclear factor kappa B through c-FLIP-L expression
Benoit, Valérie; Chariot, Alain ULg; Delacroix, Laurence ULg et al

in Cancer Research (2004), 64(8), 2684-2691

The oncoprotein HER-2/neu is a prosurvival factor, and its overexpression has been correlated with poor prognosis in patients with breast cancer. We report that HER-2 is a new substrate for caspase-8 and ... [more ▼]

The oncoprotein HER-2/neu is a prosurvival factor, and its overexpression has been correlated with poor prognosis in patients with breast cancer. We report that HER-2 is a new substrate for caspase-8 and that tumor necrosis factor alpha (TNF-alpha) stimulation leads to an early caspase-8-dependent HER-2 cleavage in MCF7 A/Z breast adenocarcinoma cells defective for nuclear factor kappaB (NFkappaB) activation. We show that the antiapoptotic transcription factor NFkappaB counteracts this cleavage through induction of the caspase-8 inhibitor c-FLIP. Our results also demonstrate that this HER-2 cleavage contributes to the TNF-alpha-induced apoptosis pathway because ectopic expression of an uncleavable HER-2 protects NFkappaB-defective cells against TNF-alpha-mediated cell death. Therefore, we propose an original model in which NFkappaB exerts a new antiapoptotic function by counteracting TNF-alpha-triggered cleavage of the HER-2 survival factor. [less ▲]

Detailed reference viewed: 74 (33 ULg)
Full Text
Peer Reviewed
See detail15-deoxy-delta12,14-prostaglandin J2 inhibits Bay 11-7085-induced sustained extracellular signal-regulated kinase phosphorylation and apoptosis in human articular chondrocytes and synovial fibroblasts
Relic, Biserka ULg; Benoit, Valerie; Franchimont, Nathalie et al

in Journal of Biological Chemistry (2004), 279(21), 399-403

We have previously shown that nuclear factor-kappaB inhibition by adenovirus expressing mutated IkappaB-alpha or by proteasome inhibitor increases human articular chondrocytes sensibility to apoptosis ... [more ▼]

We have previously shown that nuclear factor-kappaB inhibition by adenovirus expressing mutated IkappaB-alpha or by proteasome inhibitor increases human articular chondrocytes sensibility to apoptosis. Moreover, the nuclear factor-kappaB inhibitor BAY11-7085, a potent anti-inflammatory drug in rat adjuvant arthritis, is itself a proapoptotic agent for chondrocytes. In this work, we show that BAY 11-7085 but not the proteasome inhibitor MG-132 induced a rapid and sustained phosphorylation of extracellular signal-regulated kinases (ERK1/2) in human articular chondrocytes. The level of ERK1/2 phosphorylation correlated with BAY 11-7085 concentration and chondrocyte apoptosis. 15-Deoxy-delta(12,14)-prostaglandin J2 (15d-PGJ2) and its precursor prostaglandin (PG) D2 but not PGE2 and PGF2alpha rescued chondrocytes from BAY 11-7085-induced apoptosis. 15d-PGJ2 markedly inhibited BAY 11-7085-induced phosphorylation of ERK1/2. BAY 11-7085 also induced ERK1/2 phosphorylation and apoptosis in human synovial fibroblasts, and these reactions were down-regulated by 15d-PGJ2. Further analysis in synovial fibroblasts showed that only molecules that suppressed BAY 11-7085-induced phosphorylation of ERK1/2 (i.e. 15d-PGJ2, PGD2, and to a lesser extent, MEK1/2 inhibitor UO126, but not prostaglandins E2 and F2alpha or peroxisome proliferator-activated receptor-gamma agonist ciglitazone) were able protect cells from apoptosis. These results suggested that the antiapoptotic effect of 15d-PGJ2 on chondrocytes and synovial fibroblasts might involve inhibition of ERK1/2 phosphorylation. [less ▲]

Detailed reference viewed: 17 (2 ULg)
Full Text
Peer Reviewed
See detailTNF-alpha protects human primary articular chondrocytes from nitric oxide-induced apoptosis via nuclear factor-kappaB
Relic, Biserka ULg; Bentires-Alj, Mohamed; Ribbens, Clio ULg et al

in Laboratory Investigation : Journal of Technical Methods & Pathology (2002), 82(12), 1661-1672

TNF-alpha plays a key role in rheumatoid arthritis, but its effect on chondrocyte survival is still conflicting. In the present study, we tested how TNF-alpha influences chondrocyte survival in response ... [more ▼]

TNF-alpha plays a key role in rheumatoid arthritis, but its effect on chondrocyte survival is still conflicting. In the present study, we tested how TNF-alpha influences chondrocyte survival in response to nitric oxide (NO)-related apoptotic signals, which are abundant during rheumatoid arthritis. Human primary articular chondrocytes or cartilage explants were pretreated with TNF-alpha for 24 hours and then treated with the proapoptotic NO donor sodium-nitro-prusside (SNP) for an additional 24 hours. TNF-alpha pretreatment markedly protected chondrocytes from SNP-induced cell death. Preincubation of chondrocytes with TNF-alpha inhibited both SNP-induced high-molecular weight DNA fragmentation and annexin V-FITC binding. Of interest, TNF-alpha induced persistent nuclear factor-kappaB (NF-kappaB)-DNA binding activity even in the presence of SNP, mirroring apoptosis protection effects. Both the TNF-alpha antiapoptotic effect and NF-kappaB-DNA binding activity were significantly inhibited by NF-kappaB inhibitors, Bay 11-7085, MG-132, and adenovirus-expressing mutated IkappaB-alpha. Phosphatidylinositol-3 kinase inhibitor LY 294002 also markedly inhibited the antiapoptotic effect of TNF-alpha. In primary chondrocytes, TNF-alpha induced expression of the antiapoptotic protein Cox-2, which persisted in the presence of SNP, and a specific Cox-2 inhibitor significantly blocked the TNF-alpha protective effect. We therefore conclude that TNF-alpha-mediated protection of chondrocytes from NO-induced apoptosis acts through NF-kappaB and requires Cox-2 activity. [less ▲]

Detailed reference viewed: 28 (0 ULg)