References of "Benali, Samira"
     in
Bookmark and Share    
See detailAbout the use of PCL/clay nanohybrid masterbatches
Benali, Samira; Brocorens, Patrick; Olivier, Aurore et al

Poster (2008, September 09)

Detailed reference viewed: 34 (8 ULg)
See detailAbout the use of PCL/clay nanohybrid masterbatches
Benali, Samira; Brocorens, P.; Olivier, A. et al

Conference (2008, September 09)

Detailed reference viewed: 25 (9 ULg)
Full Text
Peer Reviewed
See detailPoly(caprolactone)/clay masterbatches prepared in supercritical CO2 as efficient clay delamination promoters in poly(styrene-co-acrylonitrile)
Urbanczyk, Laetitia ULg; Calberg, Cédric ULg; Benali, Samira et al

in Journal of Materials Chemistry (2008), 18(39), 4623-4630

Poly(styrene-co-acrylonitrile) (SAN)/clay nanocomposites with a high degree of clay exfoliation were prepared upon melt blending of pre-exfoliated poly(-caprolactone) (PCL)/organoclay masterbatches in a ... [more ▼]

Poly(styrene-co-acrylonitrile) (SAN)/clay nanocomposites with a high degree of clay exfoliation were prepared upon melt blending of pre-exfoliated poly(-caprolactone) (PCL)/organoclay masterbatches in a Brabender-type internal mixer. These highly filled masterbatches were synthesized by a one-pot process using supercritical carbon dioxide as a polymerization medium. During their dispersion into SAN, PCL is expected to act as a compatibilizer at the polymer–clay interface as it is miscible with the host matrix under these conditions. Reference nanocomposites based on direct melt mixing of the commercial organoclay were also prepared for the sake of comparison. The superiority of the masterbatch route in term of clay delamination efficiency has been evidenced by XRD analysis, visual and TEM observations. The effect of the nanocomposite morphology on the polymer properties was then investigated. A substantial improvement of the fire behaviour and a decrease in gas permeability have been observed for the nanocomposite containing the highest level of clay exfoliation, accompanied with a higher brittleness as evidenced by traction and impact tests. [less ▲]

Detailed reference viewed: 109 (7 ULg)
Full Text
Peer Reviewed
See detailMicroscopic morphology of chlorinated polyethylene nanocomposites synthesized from poly(e-caprolactone)/clay masterbatches
Brocorens, Patrick; Benali, Samira; Broekaert, Cedric et al

in Langmuir (2008), 24

Chlorinated polyethylene (CPE) nanocomposites were synthesized by melt blending clay-rich/poly( -caprolactone) (PCL) masterbatches to CPE matrices. The masterbatches were prepared following two synthetic ... [more ▼]

Chlorinated polyethylene (CPE) nanocomposites were synthesized by melt blending clay-rich/poly( -caprolactone) (PCL) masterbatches to CPE matrices. The masterbatches were prepared following two synthetic routes: either PCL is melt-blended to the clay or it is grafted to the clay platelets by in situ polymerization. The microscopic morphology of the nanocomposites was characterized by X-ray diffraction, atomic force microscopy, transmission electron microscopy, and modulated temperature differential scanning calorimetry. When using free PCL, intercalated composites are formed, with clay aggregates that can have micrometric dimensions and a morphology similar to that of the talc particles used as fillers in commercial CPE. PCL crystallizes as long lamellae dispersed in the polymer matrix. When using grafted PCL, the nanocomposite is intercalated/exfoliated, and the clay stacks are small and homogeneously dispersed. PCL crystallizes as lamellae and smaller crystals, which are localized along the clay layers. Thanks to the grafting of PCL to the clay platelets, these crystalline domains are thought to form a network with the clay sheets, which is responsible for the large improvement of the mechanical properties of these materials. [less ▲]

Detailed reference viewed: 25 (0 ULg)