References of "Bellahcene, Akeila"
     in
Bookmark and Share    
Full Text
See detailOsteopontin predicts radiotherapy response of glioblastoma patients : new role in DNA damage repair
Henry, Aurélie ULg; Nokin, Marie-Julie; Leroi, Natacha ULg et al

Conference (2016, March 22)

- Introduction: Glioblastoma (GBM) is the most aggressive and common solid human brain tumor. Because of GBM heterogeneity, location and aggressiveness, none of the available treatment is curative. These ... [more ▼]

- Introduction: Glioblastoma (GBM) is the most aggressive and common solid human brain tumor. Because of GBM heterogeneity, location and aggressiveness, none of the available treatment is curative. These treatments include maximal surgical resection, radiotherapy and concomitant or adjuvant chemotherapy with Temozolomide. However, the prognosis of adult patients with GBM remains poor and the survival outcome after treatment does not exceed 15 months. GBM-composing cells have developed many strategies to counteract these current therapies. Among the wide hallmarks acquired to survive, high osteopontin (OPN) expression correlates with lower overall and disease-free/relapse-free survival in all tumors combined, as well in brain cancer. Our recent study (Lamour V and Henry A, IJC 2015) has demonstrated the role of OPN in the tumorigenicity of glioblastoma cells and its importance in the maintenance of the stem characters. In the continuation of this work, our recent studies focused on the potential role of OPN in the resistance of GBM cells to radiotherapy and its potential implication in the initiation of Double Strand Breaks (DSBs) repair mechanisms. - Aims: In the context of this study, different GBM cell lines (U251-MG, U87-MG and U87 Viii) were used to assess the role of OPN in the initiation of the DSBs repair mechanism after an exposure to gamma-irradiation. - Methods and results: We performed the transient transfection of different GBM cell lines (U251-MG, U87-MG and U87-MG overexpressing EGFR VIII) with siRNAs specifically directed against OPN. After irradiation, all these OPN-depleted cells consistently showed a lower induction of γ–H2AX compared to control (irrelevant siRNA) as evidenced by western blot and immunofluorescence techniques. Thereafter, clonogenic assays allowed to prove that the survival of OPN-depleted cells was affected after an exposure to irradiation. To assess the importance of OPN expression in the response to radiotherapy, an heterotopic xenograft model was used. In brief, IPTG-inducible U87 shOPN clones were injected subcutaneously in NOD-SCID mice and were allowed to form a tumor. When average tumor volume reached a predetermined size range, mice were treated (or not) with IPTG by intraperitoneal injection during five days. At the end of the treatment, tumors were selectively exposed to gamma-irradiation by using a small animal irradiator X-RAD 225Cx (Precision X-Ray Inc., North Branford, CT). One week later, mice were sacrificed and tumors were measured. In this pilot study, we observed that mice in which the tumor was depleted in OPN displayed a slight regression in the tumor growth compared to mice that received radiotherapy alone (no IPTG), where the tumor volume remained constant. - Conclusions: Taken together, these preliminary data meet the fact that OPN is important in the response of GBM to radiotherapy. The in vitro results converge to the fact that OPN might be implicated in the initiation of the DSBs repair following irradiation. Currently, we would like to investigate this hypothesis in vivo but also to check the effect of OPN depletion combined to radiotherapy on the survival of mice in an orthotopic xenograft model. [less ▲]

Detailed reference viewed: 72 (22 ULg)
Full Text
Peer Reviewed
See detailHDAC7 inhibition resets STAT3 tumorigenic activity in human glioblastoma independently of EGFR and PTEN: new opportunities for selected targeted therapies
Peixoto, Paul; Blomme, Arnaud; Costanza, Brunella ULg et al

in Oncogene (2016)

To date, the mutational status of EGFR and PTEN has been shown as relevant for favoring pro- or anti-tumor functions of STAT3 in human glioblastoma multiforme (GBM). We have screened genomic data from 154 ... [more ▼]

To date, the mutational status of EGFR and PTEN has been shown as relevant for favoring pro- or anti-tumor functions of STAT3 in human glioblastoma multiforme (GBM). We have screened genomic data from 154 patients and have identified a strong positive correlation between STAT3 and HDAC7 expression. In the current work we show the existence of a subpopulation of patients overexpressing HDAC7 and STAT3 that has particularly poor clinical outcome. Surprisingly, the somatic mutation rate of both STAT3 and HDAC7 was insignificant in GBM comparing with EGFR, PTEN or TP53. Depletion of HDAC7 in a range of GBM cells induced the expression of tyrosine kinase JAK1 and the tumor suppressor AKAP12. Both proteins synergistically sustained the activity of STAT3 by inducing its phosphorylation (JAK1) and protein expression (AKAP12). In absence of HDAC7, activated STAT3 was responsible for significant imbalance of secreted pro-/anti-angiogenic factors. This inhibited the migration and sprouting of endothelial cells in paracrine fashion in vitro as well as angiogenesis in vivo. In a murine model of GBM, induced HDAC7-silencing decreased the tumor burden by threefold. The current data show for the first time that silencing HDAC7 can reset the tumor suppressor activity of STAT3, independently of the EGFR/PTEN/TP53 background of the GBM. This effect could be exploited to overcome tumor heterogeneity and provide a new rationale behind the development of specific HDAC7 inhibitors for clinical use. [less ▲]

Detailed reference viewed: 34 (17 ULg)
Full Text
Peer Reviewed
See detailMyoferlin plays a key role in VEGFA secretion and impacts tumor-associated angiogenesis in human pancreas cancer
Fahmy, Karim ULg; Gonzalez, Arnaud; Arafa, Mohammad et al

in International Journal of Cancer = Journal International du Cancer (2016), 138

Pancreatic ductal adenocarcinoma is one of the most deadly forms of cancers with no satisfactory treatment to date. Recent studies have identified myoferlin, a ferlin family member, in human pancreas ... [more ▼]

Pancreatic ductal adenocarcinoma is one of the most deadly forms of cancers with no satisfactory treatment to date. Recent studies have identified myoferlin, a ferlin family member, in human pancreas adenocarcinoma where its expression was associated to a bad prognosis. However, the function of myoferlin in pancreas adenocarcinoma has not been reported. In other cell types, myoferlin is involved in several key plasma membrane processes such as fusion, repair, endocytosis and tyrosine kinase receptor activity. In this study, we showed that myoferlin silencing in BxPC-3 human pancreatic cancer cells resulted in the inhibition of cell proliferation in vitro and in a significant reduction of the tumor volume in chick chorioallantoic membrane assay. In addition to be smaller, the tumors formed by the myoferlin-silenced cells showed a marked absence of functional blood vessels. We further demonstrated that this effect was due, at least in part, to an inhibition of VEGFA secretion by BxPC-3 myoferlin-silenced cells. Using immunofluorescence and electron microscopy, we linked the decreased VEGFA secretion to an impairment of VEGFA exocytosis. The clinical relevance of our results was further strengthened by a significant correlation between myoferlin expression in a series of human pancreatic malignant lesions and their angiogenic status evaluated by the determination of the blood vessel density. [less ▲]

Detailed reference viewed: 101 (29 ULg)
Full Text
See detailOsteopontin as a new target in glioblastoma progression and resistance to radiotherapy
Henry, Aurélie ULg; Bellahcene, Akeila ULg; Castronovo, Vincenzo ULg et al

Conference (2015, September 10)

Glioblastoma (GBM) is the most aggressive and common solid human brain tumor. Because of GBM heterogeneity, location and aggressiveness, none of the available treatment is curative. These treatments ... [more ▼]

Glioblastoma (GBM) is the most aggressive and common solid human brain tumor. Because of GBM heterogeneity, location and aggressiveness, none of the available treatment is curative. These treatments include maximal surgical resection, radiotherapy and concomitant or adjuvant chemotherapy with Temozolomide (TMZ). However, the prognosis of adult patients with GBM remains poor and the survival outcome after treatment does not exceed 15 months. Glioblastoma-composing cells have developed many strategies to counteract these current therapies. Among the wide hallmarks acquired to survive, osteopontin (OPN) ranks correlates with lower overall and disease-free/relapse-free survival in all tumors combined, as well in brain cancer. OPN expression is largely considered as a molecular cancer marker associated with poor prognosis for patients with cancer. Our preliminary works (Lamour V and Henry A, IJC 2015) have demonstrated the role of OPN in the tumorigenicity of glioblastoma cells and its importance in the maintenance of the stem charachters. Within the continuance of this work, our recent studies focused on the potential role of OPN in the resistance of glioblastoma cells to radiotherapy and its implication in the initiation of Double Strand Breaks (DSBs) repair mechanism. In this context, U251-MG and U87-MG cells were used to assess the role of OPN in the initiation of the DSBs repair mechanism after an exposure to gamma-irradiation (γ–IR). The transient transfection of both cell lines with siRNA directed against OPN shown a lower induction of γ–H2AX compared to control (irrelevant siRNA). The survival of U251-OPN depleted cells was also affected after an exposure to γ–IR (based on clonogenic assays). However, the sole depletion of OPN in U87 cells affected their survival (independently of the γ–IR). To prove that the secreted form of OPN is necessary to survive after γ–IR, conditionned medium of U87-shSCR clones (rich in OPN) was used to treat U87shOPN clones before an exposure to γ–IR. By immunofluorescence, we observed that the γ–H2AX staining was higher in U87 shOPN clones than when treated with their own conditionned medium (poor in OPN). Currently, we are investigating the in vivo implication of OPN in the initiation of DSBs repair mechanism after an exposure of mice to γ–IR (whole brain exposure). For this purpose, IPTG-inducible U87 shRNA clones (SCR and OPN) have been generated and validated for an orthotopic xenograft model in NOD-SCID mice. The survival after a radiotherapy of 10 Gy (2Gy per day for 5 days) will be assessed in OPN-positive and –negative tumor-bearing mice. Taken together, these datas suggest that OPN could represent an important pronostic factor for patient response to radiotherapy in the context of GBM. [less ▲]

Detailed reference viewed: 137 (29 ULg)
Full Text
See detailMyoferlin: an indispensable component in VEGFA secretion by pancreas cancer cells
Fahmy, Karim ULg; Peulen, Olivier ULg; Castronovo, Vincenzo ULg et al

Poster (2015, January 31)

In this poster, our laboratory showed the importance of myoferlin, a biomarker of pancreas cancer, in the controle of VEGF-A mediated angiogenesis. Our laboratory showed that silencing myoferlin in ... [more ▼]

In this poster, our laboratory showed the importance of myoferlin, a biomarker of pancreas cancer, in the controle of VEGF-A mediated angiogenesis. Our laboratory showed that silencing myoferlin in pancreas cancer cells, BxPC-3, provoques a decrease in cell prolifération in vitro and a decrease in tumor volumes in animal model. Myoferlin silencing also provokes a decrease in VEGF-A secretion in the conditioned medium and that decrease was abserved in the animal model as a decrease in microvessels dencity. It appeared that this decrease in secretion is due to a a blockage in the exocytosis. Our data also showed a significate correlation between myoferlin expression and microvessels density in patients section. [less ▲]

Detailed reference viewed: 21 (6 ULg)
Full Text
Peer Reviewed
See detailTargeting osteopontin suppresses glioblastoma stem-like cell character and tumorigenicity in vivo
Lamour, Virginie; Henry, Aurélie ULg; Kroonen, Jerome et al

in International Journal of Cancer = Journal International du Cancer (2015)

Osteopontin (OPN) is a secreted protein involved in most aspects of tumor progression and metastasis development. Elevated OPN expression has been reported in multiple types of cancer including ... [more ▼]

Osteopontin (OPN) is a secreted protein involved in most aspects of tumor progression and metastasis development. Elevated OPN expression has been reported in multiple types of cancer including glioblastoma (GBM), the highest grade and most aggressive brain tumor. GBMs contain a subpopulation of glioma-initiating cells (GICs) implicated in progression, therapeutic resistance and recurrence. We have previously demonstrated that OPN silencing inhibited GBM cell growth in vitro and in vivo. Moreover, activation of CD44 signaling upon OPN ligation has been recently implicated in the acquisition of a stem cell phenotype by GBM cells. The present study is aimed to explore OPN autocrine function using shRNA silencing strategy in GICs enriched from GBM cell lines and a human primary GBM grown in EGF and bFGF defined medium. The removal of these growth factors and addition of serum induced a significant loss of OPN expression in GICs. We showed that OPN-silenced GICs were unable to grow as spheres and this capacity was restored by exogenous OPN. Importantly, the expression of Sox2, Oct3/4 and Nanog, key stemness transcription factors, was significantly decreased in GICs upon OPN targeting. We identified Akt/mTOR/p70S6K as the main signaling pathway triggered following OPN-mediated EGFR activation in GICs. Finally, in an orthotopic xenograft mouse model, the tumorigenic potential of U87-MG sphere cells was completely abrogated upon OPN silencing. Our demonstration of endogenous OPN major regulatory effects on GICs stemness phenotype and tumorigenicity implies a greater role than anticipated for OPN in GBM pathogenesis from initiation and progression to probable recurrence. [less ▲]

Detailed reference viewed: 97 (35 ULg)
Full Text
Peer Reviewed
See detailAsporin Is a Fibroblast-Derived TGF-beta1 Inhibitor and a Tumor Suppressor Associated with Good Prognosis in Breast Cancer.
Maris, Pamela; Blomme, Arnaud; Palacios, Ana Perez et al

in PLoS medicine (2015), 12(9), 1001871

BACKGROUND: Breast cancer is a leading malignancy affecting the female population worldwide. Most morbidity is caused by metastases that remain incurable to date. TGF-beta1 has been identified as a key ... [more ▼]

BACKGROUND: Breast cancer is a leading malignancy affecting the female population worldwide. Most morbidity is caused by metastases that remain incurable to date. TGF-beta1 has been identified as a key driving force behind metastatic breast cancer, with promising therapeutic implications. METHODS AND FINDINGS: Employing immunohistochemistry (IHC) analysis, we report, to our knowledge for the first time, that asporin is overexpressed in the stroma of most human breast cancers and is not expressed in normal breast tissue. In vitro, asporin is secreted by breast fibroblasts upon exposure to conditioned medium from some but not all human breast cancer cells. While hormone receptor (HR) positive cells cause strong asporin expression, triple-negative breast cancer (TNBC) cells suppress it. Further, our findings show that soluble IL-1beta, secreted by TNBC cells, is responsible for inhibiting asporin in normal and cancer-associated fibroblasts. Using recombinant protein, as well as a synthetic peptide fragment, we demonstrate the ability of asporin to inhibit TGF-beta1-mediated SMAD2 phosphorylation, epithelial to mesenchymal transition, and stemness in breast cancer cells. In two in vivo murine models of TNBC, we observed that tumors expressing asporin exhibit significantly reduced growth (2-fold; p = 0.01) and metastatic properties (3-fold; p = 0.045). A retrospective IHC study performed on human breast carcinoma (n = 180) demonstrates that asporin expression is lowest in TNBC and HER2+ tumors, while HR+ tumors have significantly higher asporin expression (4-fold; p = 0.001). Assessment of asporin expression and patient outcome (n = 60; 10-y follow-up) shows that low protein levels in the primary breast lesion significantly delineate patients with bad outcome regardless of the tumor HR status (area under the curve = 0.87; 95% CI 0.78-0.96; p = 0.0001). Survival analysis, based on gene expression (n = 375; 25-y follow-up), confirmed that low asporin levels are associated with a reduced likelihood of survival (hazard ratio = 0.58; 95% CI 0.37-0.91; p = 0.017). Although these data highlight the potential of asporin to serve as a prognostic marker, confirmation of the clinical value would require a prospective study on a much larger patient cohort. CONCLUSIONS: Our data show that asporin is a stroma-derived inhibitor of TGF-beta1 and a tumor suppressor in breast cancer. High asporin expression is significantly associated with less aggressive tumors, stratifying patients according to the clinical outcome. Future pre-clinical studies should consider options for increasing asporin expression in TNBC as a promising strategy for targeted therapy. [less ▲]

Detailed reference viewed: 63 (10 ULg)
Full Text
Peer Reviewed
See detailHistone deacetylases and cancer-associated angiogenesis: current understanding of the biology and clinical perspectives.
Turtoi, Andrei ULg; Peixoto, Paul; Castronovo, Vincenzo ULg et al

in Critical reviews in oncogenesis (2015), 20(1-2), 119-37

Histone deacetylase enzymes (HDACs) have been shown to be important to the development and progression of human cancers. Angiogenesis is a vital process that facilitates tumor growth and survival. More ... [more ▼]

Histone deacetylase enzymes (HDACs) have been shown to be important to the development and progression of human cancers. Angiogenesis is a vital process that facilitates tumor growth and survival. More than a dozen of different activators and inhibitors are involved in at least as many diverse mechanisms to control angiogenesis. HDACs directly or indirectly control many of these regulators. In the current review, we give a brief overview of molecular mechanisms of HDAC actions and link these to the current knowledge concerning HDAC-mediated regulation of tumor-associated angiogenesis. HDAC specific knockdown studies and the use of pan-HDAC inhibitors (HDACi) contributed to the identification of: (i) HDACs that are key to angiogenesis and (ii) their multiple protein targets essential for angiogenic process. The clinical development of HDACi is an active area of investigation. In the scope of this review, we highlight several preclinical studies that examine the anti-angiogenic role of HDACi. Certainly, there is still much to be learned about the use of HDACi to inhibit tumoral angiogenesis. Recent efforts in the clinics aiming to combine broad HDACi (mainly vorinostat, which is FDA approved for T-cell lymphoma) with other anti-angiogenic therapies could, however, bring the proof that the lack of specificity of pan-HDACi may not be a major issue as compared with (long-time idealized) selective inhibitors targeting one particular HDAC. [less ▲]

Detailed reference viewed: 13 (1 ULg)
Full Text
Peer Reviewed
See detailIdentification of Cytotoxic and Antioxidant Compounds from Allium gramineum Flowers
Mskhiladze, Lasha; Chincharadze, David; Tits, Monique ULg et al

in International Journal of Pharmaceutical Sciences and Drug Research (2015), 7

The present study evaluates the in vitro anticancer, antiplasmodial and antioxidant activity of the ethanolic crude extract from the flowers of Allium gramineum growing in Georgia and of one flavonol and ... [more ▼]

The present study evaluates the in vitro anticancer, antiplasmodial and antioxidant activity of the ethanolic crude extract from the flowers of Allium gramineum growing in Georgia and of one flavonol and two steroidal glycosides which were isolated from this plant. The flowers were extracted with ethanol and this total extract was subjected to successive bioguided fractionations to provide glycosides 1-3. Their structures were elucidated on the basis of NMR and ESI-MS spectrometric data in comparison with the existing literature and have been identified as: isorhamnetin-3-O-β-D-glucopyranoside (1), diosgenin-3-O-α-rhamnopyranosyl-(1→2)-β-D-glucopyranoside (Prosapogenin A of dioscin) (2), diosgenin-3-O-α-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)-]-β-D-glucopyranoside (Deltonine) (3). The ethanolic extract has been shown to strongly inhibit the growth of breast adenocarcinoma cell lines, with an IC50 of 4.5 ± 0.7μg/mL for MDAMB-231 and 4.8 ± 0.9μg/mL for MCF-7 cells. The cytotoxic activity was related to 2 and 3 which exhibited potent cytotoxicity, with an IC50 of ± 3μM. Concerning antiplasmodial activities, only weak activities were observed using the ethanolic extract and the two saponins. The flavonoid was almost inactive. Finally, the radical-scavenging activity of the ethanolic extract was tested in presence of ABTS·+ solution. A decrease of the absorbance intensity was observed, with an IC50 value of 22.1 ± 0.6μg/mLwhile trolox, used as Standard drug, showed a pronounced activity (IC50 = 12.7±0.5μM). The glycoside 1 showed the lowest IC50 value of 20.1 ± 0.8μM while both 2 and 3 exhibited very weak radical scavenging activity. [less ▲]

Detailed reference viewed: 96 (18 ULg)
Full Text
Peer Reviewed
See detailTriple negative tumors accumulate significantly less methylglyoxal specific adducts than other human breast cancer subtypes
Chiavarina, Barbara ULg; Nokin, Marie-Julie; Durieux, Florence ULg et al

in Oncotarget (2014)

Metabolic syndrome and type 2 diabetes are associated with increased risk of breast cancer development and progression. Methylglyoxal (MG), a glycolysis by- product, is generated through a non-enzymatic ... [more ▼]

Metabolic syndrome and type 2 diabetes are associated with increased risk of breast cancer development and progression. Methylglyoxal (MG), a glycolysis by- product, is generated through a non-enzymatic reaction from triose-phosphate intermediates. This dicarbonyl compound is highly reactive and contributes to the accumulation of advanced glycation end products. In this study, we analyzed the accumulation of Arg-pyrimidine, a MG-arginine adduct, in human breast adenocarcinoma and we observed a consistent increase of Arg-pyrimidine in cancer cells when compared with the non-tumoral counterpart. Further immunohistochemical comparative analysis of breast cancer subtypes revealed that triple negative lesions exhibited low accumulation of Arg-pyrimidine compared with other subtypes. Interestingly, the activity of glyoxalase 1 (Glo-1), an enzyme that detoxifies MG, was significantly higher in triple negative than in other subtype lesions, suggesting that these aggressive tumors are able to develop an efficient response against dicarbonyl stress. Using breast cancer cell lines, we substantiated these clinical observations by showing that, in contrast to triple positive, triple negative cells induced Glo-1 expression and activity in response to MG treatment. This is the first report that Arg- pyrimidine adduct accumulation is a consistent event in human breast cancer with a differential detection between triple negative and other breast cancer subtypes. [less ▲]

Detailed reference viewed: 77 (19 ULg)
Full Text
Peer Reviewed
See detailChanges in the transcriptional profile in response to overexpression of the osteopontin-c splice isoform in ovarian (OvCar-3) and prostate (PC-3) cancer cell lines.
Tilli, Tatiana M.; Bellahcene, Akeila ULg; Castronovo, Vincenzo ULg et al

in BMC cancer (2014), 14

BACKGROUND: Especially in human tumor cells, the osteopontin (OPN) primary transcript is subject to alternative splicing, generating three isoforms termed OPNa, OPNb and OPNc. We previously demonstrated ... [more ▼]

BACKGROUND: Especially in human tumor cells, the osteopontin (OPN) primary transcript is subject to alternative splicing, generating three isoforms termed OPNa, OPNb and OPNc. We previously demonstrated that the OPNc splice variant activates several aspects of the progression of ovarian and prostate cancers. The goal of the present study was to develop cell line models to determine the impact of OPNc overexpression on main cancer signaling pathways and thus obtain insights into the mechanisms of OPNc pro-tumorigenic roles. METHODS: Human ovarian and prostate cancer cell lines, OvCar-3 and PC-3 cells, respectively, were stably transfected to overexpress OPNc. Transcriptomic profiling was performed on these cells and compared to controls, to identify OPNc overexpression-dependent changes in gene expression levels and pathways by qRT-PCR analyses. RESULTS: Among 84 genes tested by using a multiplex real-time PCR Cancer Pathway Array approach, 34 and 16, respectively, were differentially expressed between OvCar-3 and PC-3 OPNc-overexpressing cells in relation to control clones. Differentially expressed genes are included in all main hallmarks of cancer, and several interacting proteins have been identified using an interactome network analysis. Based on marked up-regulation of Vegfa transcript in response to OPNc overexpression, we partially validated the array data by demonstrating that conditioned medium (CM) secreted from OvCar-3 and PC-3 OPNc-overexpressing cells significantly induced endothelial cell adhesion, proliferation and migration, compared to CM secreted from control cells. CONCLUSIONS: Overall, the present study elucidated transcriptional changes of OvCar-3 and PC-3 cancer cell lines in response to OPNc overexpression, which provides an assessment for predicting the molecular mechanisms by which this splice variant promotes tumor progression features. [less ▲]

Detailed reference viewed: 38 (3 ULg)
Full Text
See detailMultiple myeloma cells instruct myeloid-derived suppressor cells to release pro-angiogenic cytokines
Binsfeld, Marilène ULg; Heusschen, Roy ULg; Lamour, Virginie et al

in Belgian Journal of Hematology (2014)

Detailed reference viewed: 29 (11 ULg)
See detailASSOCIATION BETWEEN CHONDROCYTE HYPERTROPHY AND ANGIOGENESIS OF CARTILAGE IN OSTEOARTHRITIS
Pesesse, Laurence ULg; Sanchez, Christelle ULg; Delcour, Jean-Pierre et al

Conference (2013, November)

Detailed reference viewed: 22 (5 ULg)
Full Text
Peer Reviewed
See detailMyoferlin is a key regulator of EGFR activity in breast cancer.
Turtoi, Andrei ULg; Blomme, Arnaud ULg; Bellahcene, Akeila ULg et al

in Cancer Research (2013), 73

Myoferlin is a member of the ferlin family of proteins that participate in plasma membrane fusion, repair and endocytosis. While some reports have implicated myoferlin in cancer, the extent of its ... [more ▼]

Myoferlin is a member of the ferlin family of proteins that participate in plasma membrane fusion, repair and endocytosis. While some reports have implicated myoferlin in cancer, the extent of its expression in and contributions to cancer are not well established. In this study, we show that myoferlin is overexpressed in human breast cancers and that it is has a critical role in controlling degradation of the EGFR after its activation and internalization in breast cancer cells. Myoferlin depletion blocked EGF-induced cell migration and epithelial-to-mesenchymal transition. Both effects were induced as a result of impaired degradation of phosphorylated EGFR via dysfunctional plasma membrane caveolae and alteration of caveolin homooligomerization. In parallel, myoferlin depletion reduced tumor development in a chicken chorioallantoic membrane xenograft model of human breast cancer. Considering the therapeutic significance of EGFR targeting, our findings identify myoferlin as an novel candidate function to target for future drug development. [less ▲]

Detailed reference viewed: 97 (16 ULg)
Full Text
Peer Reviewed
See detailA new murine model of osteoblastic/osteolytic lesions from human androgen-resistant prostate cancer.
Fradet, Anais; Sorel, Helene; Depalle, Baptiste et al

in PloS one (2013), 8(9), 75092

BACKGROUND: Up to 80% of patients dying from prostate carcinoma have developed bone metastases that are incurable. Castration is commonly used to treat prostate cancer. Although the disease initially ... [more ▼]

BACKGROUND: Up to 80% of patients dying from prostate carcinoma have developed bone metastases that are incurable. Castration is commonly used to treat prostate cancer. Although the disease initially responds to androgen blockade strategies, it often becomes castration-resistant (CRPC for Castration Resistant Prostate Cancer). Most of the murine models of mixed lesions derived from prostate cancer cells are androgen sensitive. Thus, we established a new model of CRPC (androgen receptor (AR) negative) that causes mixed lesions in bone. METHODS: PC3 and its derived new cell clone PC3c cells were directly injected into the tibiae of SCID male mice. Tumor growth was analyzed by radiography and histology. Direct effects of conditioned medium of both cell lines were tested on osteoclasts, osteoblasts and osteocytes. RESULTS: We found that PC3c cells induced mixed lesions 10 weeks after intratibial injection. In vitro, PC3c conditioned medium was able to stimulate tartrate resistant acid phosphatase (TRAP)-positive osteoclasts. Osteoprotegerin (OPG) and endothelin-1 (ET1) were highly expressed by PC3c while dikkopf-1 (DKK1) expression was decreased. Finally, PC3c highly expressed bone associated markers osteopontin (OPN), Runx2, alkaline phosphatase (ALP), bone sialoprotein (BSP) and produced mineralized matrix in vitro in osteogenic conditions. CONCLUSIONS: We have established a new CRPC cell line as a useful system for modeling human metastatic prostate cancer which presents the mixed phenotype of bone metastases that is commonly observed in prostate cancer patients with advanced disease. This model will help to understand androgen-independent mechanisms involved in the progression of prostate cancer in bone and provides a preclinical model for testing the effects of new treatments for bone metastases. [less ▲]

Detailed reference viewed: 25 (3 ULg)
Full Text
Peer Reviewed
See detailLes proteines SIBLING - Outils moleculaires de la progression tumorale et de l'angiogenese.
Lamour, Virginie; Nokin, Marie-Julie ULg; Henry, Aurélie ULg et al

in Medecine sciences : M/S (2013), 29(11), 1018-25

The small integrin-binding ligand N-linked glycoprotein (SIBLING) family consists of osteopontin (OPN), bonesialoprotein (BSP), dentin matrix protein 1 (DMP1), dentin sialophosphoprotein (DSPP) and matrix ... [more ▼]

The small integrin-binding ligand N-linked glycoprotein (SIBLING) family consists of osteopontin (OPN), bonesialoprotein (BSP), dentin matrix protein 1 (DMP1), dentin sialophosphoprotein (DSPP) and matrix extracellular phosphoglycoprotein (MEPE). These proteins, initially identified in bone and teeth, share many structural characteristics. It is now well established that they are over expressed in many tumors and play a critical role at different steps of cancer development. In this review, we describe the roles of SIBLING proteins at different stages of cancer progression including cancer cell adhesion, proliferation, migration, invasion, metastasis and angiogenesis. [less ▲]

Detailed reference viewed: 79 (19 ULg)