References of "Begon, Dominique"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailNovel association between vasoactive intestinal peptide and CRTH2 receptor in recruiting eosinophils: a possible biochemical mechanism for allergic eosinophilic inflammation of the airways.
EL SHAZLY, Amr ULg; Begon, Dominique ULg; KUSTERMANS, Gaëlle ULg et al

in Journal of Biological Chemistry (2013), 288(2), 1374-84

We explored the relation between vasoactive intestinal peptide (VIP), CRTH2, and eosinophil recruitment. It is shown that CRTH2 expression by eosinophils from allergic rhinitis (AR) patients and ... [more ▼]

We explored the relation between vasoactive intestinal peptide (VIP), CRTH2, and eosinophil recruitment. It is shown that CRTH2 expression by eosinophils from allergic rhinitis (AR) patients and eosinophils cell line (Eol-1 cells) was up-regulated by VIP treatment. This was functional and resulted into exaggerated migratory response of cells against PGD2. Nasal challenge of AR patients resulted into significant increase of VIP contents in nasal secretion (ELISA), and the immunohistochemical studies of allergic nasal tissues, showed significant expression of VIP in association with intense eosinophil recruitment. Biochemical assays showed that VIP-induced eosinophils chemotaxis from AR patients and Eol-1 cells, was mediated through CRTH2 receptor. Cells migration against VIP was sensitive to protein kinase C (PKC) and protein kinase A (PKA) inhibition, but not to tyrosine kinase or P38 MAP-kinase inhibition, or calcium chelation. Western blot demonstrated a novel CRTH2 mediated cytosol to membrane translocation of PKC-epsilon, PKC-delta and PKA-alpha, gamma and IIalpha reg in Eol-1 cells upon stimulation with VIP. Confocal images and FACS demonstrated a strong association and co-localization between VIP peptide and CRTH2 molecules. Further, VIP induced PGD2 secretion from eosinophils. Our results demonstrate the first evidence of association between VIP and CRTH2 in recruiting eosinophils. [less ▲]

Detailed reference viewed: 38 (8 ULg)
Full Text
Peer Reviewed
See detailIFN-gamma and TNF-alpha potentiate prostaglandin D2-induced human eosinophil chemotaxis through up-regulation of CRTH2 surface receptor.
EL SHAZLY, Amr ULg; MOONEN, Vincent ULg; MAWET, Marie et al

in International immunopharmacology (2011), 11(11), 1864-70

Prostaglandin D2 (PGD2) receptor CRTH2, is a pro-inflammatory molecule involved in eosinophil recruitment to the allergic airway. We investigated the expression of CRTH2 in eosinophil from allergic ... [more ▼]

Prostaglandin D2 (PGD2) receptor CRTH2, is a pro-inflammatory molecule involved in eosinophil recruitment to the allergic airway. We investigated the expression of CRTH2 in eosinophil from allergic rhinitis patients (AR) and tested the modulatory role of several TH1 and TH2 cytokines closely related to the allergic immunological response, on the expression of CRTH2 receptor, utilizing human eosinophil cell line (Eol-1).The expression of CRTH2 was tested by immunohistochemistry and flow cytometry (FACS). Chemotaxis was performed in micro-chemotaxis chambers. It is shown that the expression of CRTH2 by eosinophils was significantly higher in the nasal tissue and peripheral blood of AR patients, when compared to control subjects. PGD2 exhibited a typical bell shape dose response in attracting eosinophil from AR patients with optimal activity at 10(-7)M. Eol-1 cell surface expression of CRTH2 was significantly up-regulated by 10ng/ml IFN-gamma and TNF-alpha. The percentage of Eol-1 cells expressing the receptor increased by IFN-gamma and TNF-alpha from 12.74%+/-2.66 to 55%+/-8 and 33.8%+/-9.4, respectively. PGD2-induced Eol-1 chemotaxis was not blocked by SB203580, H-89 Dihydrochloride, Bisindo-lylmaleimide, or Genistein. PGD2-induced Eol-1 chemotaxis was potentiated by IFN-gamma and TNF-alpha without changing the signal transduction pathway. Correlation of our results to peripheral blood eosinophils from allergic rhinitis patients confirmed that 3hour pretreatment of eosinophils by 10ng/ml IFN-gamma and TNF-alpha, increased the mean fluorescence intensity (MFI) of CRTH2 from 8.23 to 9.68 and 9.38, respectively, and potentiated PGD2-induced eosinophil chemotaxis. Our results demonstrate a novel synergism between PGD2, IFN-gamma and TNF-alpha, in eosinophil chemotaxis. [less ▲]

Detailed reference viewed: 139 (11 ULg)
Full Text
Peer Reviewed
See detailThe human epidermal growth factor receptor (EGFR) gene in European patients with advanced colorectal cancer harbors infrequent mutations in its tyrosine kinase domain.
Metzger, B.; Chambeau, L.; Begon, Dominique ULg et al

in BMC medical genetics (2011), 12(1), 144

ABSTRACT: BACKGROUND: The epidermal growth factor receptor (EGFR), a member of the ErbB family of receptors, is a transmembrane tyrosine kinase (TK) activated by the binding of extracellular ligands of ... [more ▼]

ABSTRACT: BACKGROUND: The epidermal growth factor receptor (EGFR), a member of the ErbB family of receptors, is a transmembrane tyrosine kinase (TK) activated by the binding of extracellular ligands of the EGF-family and involved in triggering the MAPK signaling pathway, which leads to cell proliferation. Mutations in the EGFR tyrosine kinase domain are frequent in non-small-cell lung cancer (NSCLC). However, to date, only very few, mainly non-European, studies have reported rare EGFR mutations in colorectal cancer (CRC). METHODS: We screened 236 clinical tumor samples from European patients with advanced CRC by direct DNA sequencing to detect potential, as yet unknown mutations, in the EGFR gene exons 18 to 21, mainly covering the EGFR TK catalytic domain. RESULTS: EGFR sequences showed somatic missense mutations in exons 18 and 20 at a frequency of 2.1% and 0.4% respectively. Somatic SNPs were also found in exons 20 and 21 at a frequency of about 3.1% and 0.4% respectively. Of these mutations, four have not yet been described elsewhere. CONCLUSIONS: These mutation frequencies are higher than in a similarly sized population characterized by Barber and colleagues, but still too low to account for a major role played by the EGFR gene in CRC. [less ▲]

Detailed reference viewed: 22 (10 ULg)
Full Text
Peer Reviewed
See detailThe combined immunodetection of AP-2alpha and YY1 transcription factors is associated with ERBB2 gene overexpression in primary breast tumors.
Allouche, Abdelkader; Nolens, Gregory ULg; Tancredi, Annalisa ULg et al

in Breast Cancer Research [=BCR] (2008), 10(1), 9

INTRODUCTION: Overexpression of the ERBB2 oncogene is observed in about 20% of human breast tumors and is the consequence of increased transcription rates frequently associated with gene amplification ... [more ▼]

INTRODUCTION: Overexpression of the ERBB2 oncogene is observed in about 20% of human breast tumors and is the consequence of increased transcription rates frequently associated with gene amplification. Several studies have shown a link between activator protein 2 (AP-2) transcription factors and ERBB2 gene expression in breast cancer cell lines. Moreover, the Yin Yang 1 (YY1) transcription factor has been shown to stimulate AP-2 transcriptional activity on the ERBB2 promoter in vitro. In this report, we examined the relationships between ERBB2, AP-2alpha, and YY1 both in breast cancer tissue specimens and in a mammary cancer cell line. METHODS: ERBB2, AP-2alpha, and YY1 protein levels were analyzed by immunohistochemistry in a panel of 55 primary breast tumors. ERBB2 gene amplification status was determined by fluorescent in situ hybridization. Correlations were evaluated by a chi2 test at a p value of less than 0.05. The functional role of AP-2alpha and YY1 on ERBB2 gene expression was analyzed by small interfering RNA (siRNA) transfection in the BT-474 mammary cancer cell line followed by real-time reverse transcription-polymerase chain reaction and Western blotting. RESULTS: We observed a statistically significant correlation between ERBB2 and AP-2alpha levels in the tumors (p < 0.01). Moreover, associations were found between ERBB2 protein level and the combined high expression of AP-2alpha and YY1 (p < 0.02) as well as between the expression of AP-2alpha and YY1 (p < 0.001). Furthermore, the levels of both AP-2alpha and YY1 proteins were inversely correlated to ERBB2 gene amplification status in the tumors (p < 0.01). Transfection of siRNAs targeting AP-2alpha and AP-2gamma mRNAs in the BT-474 breast cancer cell line repressed the expression of the endogenous ERBB2 gene at both the mRNA and protein levels. Moreover, the additional transfection of an siRNA directed against the YY1 transcript further reduced the ERBB2 protein level, suggesting that AP-2 and YY1 transcription factors cooperate to stimulate the transcription of the ERBB2 gene. CONCLUSION: This study highlights the role of both AP-2alpha and YY1 transcription factors in ERBB2 oncogene overexpression in breast tumors. Our results also suggest that high ERBB2 expression may result either from gene amplification or from increased transcription factor levels. [less ▲]

Detailed reference viewed: 136 (17 ULg)
Full Text
Peer Reviewed
See detailDistal ERBB2 promoter fragment displays specific transcriptional and nuclear binding activities in ERBB2 overexpressing breast cancer cells
Delacroix, Laurence ULg; Begon, Dominique ULg; Chatel, Guillaume et al

in DNA & Cell Biology (2005), 24(9), 582-594

Overexpression of the ERBB2 gene occurs in 30% of human breast cancers and is correlated with poor prognosis. The deregulation is the consequence of an increased transcription level and gene amplification ... [more ▼]

Overexpression of the ERBB2 gene occurs in 30% of human breast cancers and is correlated with poor prognosis. The deregulation is the consequence of an increased transcription level and gene amplification. Several laboratories, including our own, have identified, in the proximal promoter, enhancers implicated in the gene overexpression. However, our previous studies of a 6-kb ERBB2 promoter fragment revealed the presence of repressing fragments, which were able to overcome the effect of the proximal enhancers. These repressing elements were functional in all cell lines, regardless of their endogenous ERBB2 expression level. Here, we show that a distal ERBB2 promoter region restores high transcription rates specifically in ERBB2 overexpressing breast cancer cells. This distal promoter region thus contains enhancers essential for the overexpression of the gene. By EMSA, performed with nuclear extract of cells overexpressing (BT-474) or not (MDA-MB-231) the ERBB2 gene, we show that at least two sequences of the distal promoter region are bound exclusively by BT-474 extract. Further experiments reveal that AP-2 transcription factors contribute to this differential binding activity, by binding recognition sequences located 4500 bp and 4000 bp upstream of the transcription start site. These sites are occupied by AP2 in vivo, as demonstrated by ChIP assay. Inactivation of AP-2 proteins in ERBB2 overexpressing cells reduces the distal promoter activity up to 70%, indicating the AP-2 factors are implicated in the strong distal enhancing effect. Moreover, we identified a 54-bp fragment that is bound specifically by BT-474 nuclear extract. Further experiments did not lead to the identification of the protein responsible for this binding. Our results thus highlight the importance of ERBB2 distal promoter region and further implicate AP-2 in ERBB2 overexpression in breast cancer cells. [less ▲]

Detailed reference viewed: 124 (77 ULg)
Full Text
Peer Reviewed
See detailYin Yang 1 cooperates with activator protein 2 to stimulate ERBB2 gene expression in mammary cancer cells.
Begon, Dominique ULg; Delacroix, Laurence ULg; Vernimmen, Douglas et al

in Journal of Biological Chemistry (2005), 280(26), 24428-34

Overexpression of the ERBB2 oncogene is observed in about 30% of breast cancers and is generally correlated with a poor prognosis. Previous results from our and other laboratories indicated that elevated ... [more ▼]

Overexpression of the ERBB2 oncogene is observed in about 30% of breast cancers and is generally correlated with a poor prognosis. Previous results from our and other laboratories indicated that elevated transcriptional activity contributes significantly to the overexpression of ERBB2 mRNA in mammary adenocarcinoma cell lines. Activator protein 2 (AP-2) transcription factors account for this overexpression through two recognition sequences located 215 and 500 bp upstream from the transcription start site. Furthermore, AP-2 transcription factors are highly expressed in cancer cell lines overexpressing ERBB2. In this report, we examined the cooperative effect of Yin Yang 1 (YY1) on AP-2-induced activation of ERBB2 promoter activity. We detected high levels of YY1 transcription factor in mammary cancer cell lines. Notably, we showed that YY1 enhances AP-2alpha transcriptional activation of the ERBB2 promoter through an AP-2 site both in HepG2 and in HCT116 cells, whereas a carboxyl-terminal-truncated form of YY1 cannot. Moreover, we demonstrated the interaction between endogenous AP-2 and YY1 factors in the BT-474 mammary adenocarcinoma cell line. In addition, inhibition of endogenous YY1 protein by an antisense decreased the transcription of an AP-2-responsive ERBB2 reporter plasmid in BT-474 breast cancer cells. Finally, we detected in vivo AP-2 and YY1 occupancy of the ERBB2 proximal promoter in chromatin immunoprecipitation assays. Our data thus provide evidence that YY1 cooperates with AP-2 to stimulate ERBB2 promoter activity through the AP-2 binding sites. [less ▲]

Detailed reference viewed: 89 (35 ULg)
Full Text
Peer Reviewed
See detailIdentification of HTF (HER2 transcription factor) as an AP-2 (activator protein-2) transcription factor and contribution of the HTF binding site to ERBB2 gene overexpression
Vernimmen, Douglas; Begon, Dominique ULg; Salvador, Christophe et al

in Biochemical Journal (2003), 370(Pt 1), 323-329

The ERBB2 gene is overexpressed in 30% of human breast cancers and this is correlated with poor prognosis. Overexpression of the ERBB2 gene is due to increased transcription and gene amplification. Our ... [more ▼]

The ERBB2 gene is overexpressed in 30% of human breast cancers and this is correlated with poor prognosis. Overexpression of the ERBB2 gene is due to increased transcription and gene amplification. Our previous studies have identified a new cis element in the ERBB2 promoter which is involved in the gene's overexpression. This cis element, located 501 bp upstream from the main ERBB2 transcription initiation site, binds a transcription factor called HTF (HER2 transcription factor). We report here the identification of HTF as an AP-2 (activator protein-2) transcription factor. The new cis element is bound by AP-2 with high affinity, compared with a previously described AP-2 binding site located 284 bp downstream. Co-transfection of an AP-2alpha expression vector with a reporter vector containing the newly identified AP-2 binding site in front of a minimal ERBB2 promoter induced a dose-dependent increase in transcriptional activity. We examined the contribution of the new AP-2 binding site to ERBB2 overexpression. For this purpose we abolished the new and/or the previously described AP-2 binding sequence by site-directed mutagenesis. The results show that the two functional AP-2 sites in the first 700 bp of the ERBB2 promoter co-operate to achieve maximal transcriptional activity. [less ▲]

Detailed reference viewed: 88 (9 ULg)