References of "Bedoret, Denis"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailADAM-8, a metalloproteinase, drives acute allergen-induced airway inflammation
Paulissen, Geneviève ULg; Rocks, Natacha ULg; Guéders, Maud ULg et al

in European Journal of Immunology (2011), 41(2), 380-91

Asthma is a complex disease linked to various pathophysiological events including the activity of proteinases. The multifunctional A Disintegrin And Metalloproteinases (ADAMs) displaying the ability to ... [more ▼]

Asthma is a complex disease linked to various pathophysiological events including the activity of proteinases. The multifunctional A Disintegrin And Metalloproteinases (ADAMs) displaying the ability to cleave membrane-bound mediators or cytokines appear to be key mediators in various inflammatory processes. In the present study, we have investigated ADAM-8 expression and production in a mouse model of allergen-induced airway inflammation. In allergen-exposed animals, increased expression of ADAM-8 was found in the lung parenchyma and in dendritic cells purified from the lungs. The potential role of ADAM-8 in the development of allergen-induced airway inflammation was further investigated by the use of an anti-ADAM-8 antibody and ADAM-8 knock-out animals. We observed a decrease in allergen-induced acute inflammation both in BALF and the peribronchial area in anti-ADAM-8 antibody-treated mice and in ADAM-8 deficient mice (ADAM-8-/-) after allergen exposure. ADAM-8 depletion led to a significant decrease of the CD11c+ lung dendritic cells. We also report lower levels of CCL11 and CCL22 production in antibody-treated mice and ADAM-8-/- mice that might be explained by decreased eosinophilic inflammation and lower numbers of dendritic cells, respectively. In conclusion, ADAM-8 appears to favour allergen-induced acute airway inflammation by promoting dendritic cell recruitment and CCL11 and CCL22 production. [less ▲]

Detailed reference viewed: 158 (30 ULg)
Full Text
Peer Reviewed
See detailLung interstitial macrophages alter dendritic cell functions to prevent airway allergy in mice
Bedoret, Denis ULg; Wallemacq, Hugues ULg; Marichal, Thomas ULg et al

in Journal of Clinical Investigation (2009), 119(12), 3723-38

The respiratory tract is continuously exposed to both innocuous airborne antigens and immunostimulatory molecules of microbial origin, such as LPS. At low concentrations, airborne LPS can induce a lung DC ... [more ▼]

The respiratory tract is continuously exposed to both innocuous airborne antigens and immunostimulatory molecules of microbial origin, such as LPS. At low concentrations, airborne LPS can induce a lung DC-driven Th2 cell response to harmless inhaled antigens, thereby promoting allergic asthma. However, only a small fraction of people exposed to environmental LPS develop allergic asthma. What prevents most people from mounting a lung DC-driven Th2 response upon exposure to LPS is not understood. Here we have shown that lung interstitial macrophages (IMs), a cell population with no previously described in vivo function, prevent induction of a Th2 response in mice challenged with LPS and an experimental harmless airborne antigen. IMs, but not alveolar macrophages, were found to produce high levels of IL-10 and to inhibit LPS-induced maturation and migration of DCs loaded with the experimental harmless airborne antigen in an IL-10-dependent manner. We further demonstrated that specific in vivo elimination of IMs led to overt asthmatic reactions to innocuous airborne antigens inhaled with low doses of LPS. This study has revealed a crucial role for IMs in maintaining immune homeostasis in the respiratory tract and provides an explanation for the paradox that although airborne LPS has the ability to promote the induction of Th2 responses by lung DCs, it does not provoke airway allergy under normal conditions. [less ▲]

Detailed reference viewed: 196 (71 ULg)
See detailEtude du rôle des macrophages interstitiels dans l'allergie des voies respiratoires
Bedoret, Denis ULg

Doctoral thesis (2009)

Respiratory mucosal surfaces are constantly exposed to a broad range of non-pathogenic environmental antigens. In the absence of proinflammatory signals, inhalation of harmless antigens results in ... [more ▼]

Respiratory mucosal surfaces are constantly exposed to a broad range of non-pathogenic environmental antigens. In the absence of proinflammatory signals, inhalation of harmless antigens results in immunological tolerance. Indeed, lung dendritic cells stimulate the development of antigen-specific regulatory T cells. Nevertheless, epidemiological studies have shown that ambient air contains not only inert antigens but also immunostimulatory molecules of microbial origin. Of particular interest are endotoxins, a cell wall component of gram-negative bacteria that is ubiquitous in the environment. In spite of the fact that high levels of endotoxin exposure in early life protect against allergic sensitization, most evidence indicates that exposure to house-dust endotoxin is a significant risk factor for increased asthma prevalence and severity. When the respiratory tract is stimulated with airborne endotoxins, lung dendritic cells lose their tolerogenic properties and rather promote the development of an allergic response directed against concomitant aeroantigens. Although endotoxins are omnipresent in the environment and favour airway allergy, only a minority of people develops asthma. A unifying model reconciling these conflicting observations is still lacking. We report here that LPS-triggered airway allergy is tightly controlled by lung interstitial macrophages, a cell population that remains largely uncharacterized. Interstitial macrophages could be distinguished from alveolar macrophages by their unique capacity to inhibit lung dendritic cell maturation and migration upon LPS stimulation, thereby preventing sensitization to concomitant inhaled antigens. We furthermore demonstrated that functional paralysis of LPS-stimulated dendritic cells involves interleukin-10 production by interstitial macrophages. Finally, we demonstrate that specific in vivo elimination of interstitial macrophages leads to overt asthmatic reactions to innocuous airborne antigens inhaled along with low LPS doses. Our study thus reveals a crucial role for interstitial macrophages in maintaining immune homeostasis in the respiratory tract and provides an explanation for the paradox that airborne LPS has the ability to promote the induction of Th2 responses by lung dendritic cells but does not provoke airway allergy under normal conditions. In the presence of LPS, interstitial macrophages, but not alveolar macrophages, break the link between innate and adaptive immunity, allowing harmless inhaled antigens to escape from T cell-dependent responses. [less ▲]

Detailed reference viewed: 58 (17 ULg)
Full Text
Peer Reviewed
See detailDendritic cells genetically engineered to express IL-10 induce long-lasting antigen-specific tolerance in experimental asthma.
Henry, E.; Desmet, Christophe ULg; Garze, V. et al

in Journal of Immunology (2008), 181(10), 7230-7242

Dendritic cells (DCs) are professional APCs that have a unique capacity to initiate primary immune responses, including tolerogenic responses. We have genetically engineered bone marrow-derived DCs to ... [more ▼]

Dendritic cells (DCs) are professional APCs that have a unique capacity to initiate primary immune responses, including tolerogenic responses. We have genetically engineered bone marrow-derived DCs to express the immunosuppressive cytokine IL-10 and tested the ability of these cells to control experimental asthma. A single intratracheal injection of OVA-pulsed IL-10-transduced DCs (OVA-IL-10-DCs) to naive mice before OVA sensitization and challenge prevented all of the cardinal features of airway allergy, namely, eosinophilic airway inflammation, airway hyperreactivity, and production of mucus, Ag-specific Igs, and IL-4. OVA-IL-10-DCs also reversed established experimental asthma and had long-lasting and Ag-specific effects. We furthermore showed, by using IL-10-deficient mice, that host IL-10 is required for mediating the immunomodulatory effects of OVA-IL-10-DCs and demonstrated a significant increase in the percentage of OVA-specific CD4(+)CD25(+)Foxp3(+)IL-10(+) regulatory T cells in the mediastinal lymph nodes of OVA-IL-10-DC-injected mice. Finally, adoptive transfer of CD4(+) mediastinal lymph node T cells from mice injected with OVA-IL-10-DCs protected OVA-sensitized recipients from airway eosinophilia upon OVA provocation. Our study describes a promising strategy to induce long-lasting Ag-specific tolerance in airway allergy. [less ▲]

Detailed reference viewed: 66 (15 ULg)
Full Text
Peer Reviewed
See detailPulmonary function and antimicrobial concentration after marbofloxacin inhalation in horses.
Art, Tatiana ULg; de Moffarts, B.; Bedoret, Denis ULg et al

in Veterinary Record : Journal of the British Veterinary Association (2007), 161(10), 348-350

Detailed reference viewed: 24 (4 ULg)
Full Text
Peer Reviewed
See detailValidation of a portable equine metabolic measurement system
Art, Tatiana ULg; Duvivier, D. H.; van Erck, Emmanuelle et al

in Equine Veterinary Journal. Supplement (2006), 36

REASONS FOR PERFORMING STUDY: In equine sports medicine, VO2 has been measured exclusively with stationary systems, in laboratories equipped with a treadmill. Measurement during exercise in field ... [more ▼]

REASONS FOR PERFORMING STUDY: In equine sports medicine, VO2 has been measured exclusively with stationary systems, in laboratories equipped with a treadmill. Measurement during exercise in field conditions has not previously been reported because of the lack of portable equipment designed for horses. OBJECTIVES: A commercially available portable metabolic measurement system, based on breath-to-breath gas analysis and flow spirometry, was adapted to the horse's physiology and morphology (Cosmed K4b2 and Equimask) and its validity tested by (1) repeatability of the measures and (2) comparing metabolic data to those obtained by a reference method (RM). METHODS: To test the reproducibility of the measurements, 5 healthy saddle horses were subjected twice at 2 day intervals to a similar submaximal standardised incremental exercise test on a treadmill. The same horses performed twice at one week interval an incremental treadmill test to fatigue: the oxygen consumption and ventilation were measured once with the K4b2 system and once with the RM. The metabolic and ventilatory data obtained with both systems were compared. RESULTS: There was a good reproducibility of the metabolic measurements obtained by the K4b2 system at any workload. The VO2 obtained by both systems at any workload was not significantly different. However, the K4b2 expired fraction in CO2 (FETCO2) and carbon dioxide production (VCO2) were significantly lower at high and at maximal workloads. As a consequence, the values of the respiratory exchange ratio were too low and incompatible with normal physiological values. CONCLUSIONS: The good reproducibility of the metabolic and ventilatory measurements and the fact that the VO2 measurements at any workload were similar to the data obtained with the reference method suggested that this system may be used for comparison of repeated VO2 measurements in practical field conditions. POTENTIAL RELEVANCE: The K4b2 system could be used to improve knowledge of the energetic cost in different equine sports disciplines and offer the opportunity to undertake performance tests with genuine track conditions, on ridden or harnessed horses, rather than under laboratory conditions [less ▲]

Detailed reference viewed: 98 (10 ULg)